PyTorch 通道/空间注意力机制

通道注意力机制就是学习一个不同通道的加权系数,同时考虑到了所有区域
空间注意力机制就是学习整个画面不同区域的系数,同时考虑到了所有通道

PyTorch实现
哈哈哈,代码是我摘抄出来的…


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)  # 输入两个通道,一个是maxpool 一个是avgpool的
        self.sigmoid = nn.Sigmoid()

   
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)  # 对池化完的数据cat 然后进行卷积
        return self.sigmoid(x)

参考:
https://github.com/luuuyi/CBAM.PyTorch

你可能感兴趣的:(深度学习,卷积神经网络,深度学习)