【深度学习】时序数据用在Transformer的好能手-TIme2Vec-pytorch实现

面对时序问题,如果我们想直接引入Transformer会很困难,还是那句话我比较着急,直接上代码,这个是我修订后的,原作者那个没有batch_size 不能直接用在训练阶段,源代码地址:https://github.com/ojus1/Time2Vec-PyTorch

class Time2Vec(nn.Module):
    def __init__(self, activation, hidden_dim):
        '''
        
        :param activation: 激活函数(非线性激活函数) sin/cos
        :param hidden_dim: 隐藏(自定义,不影响运行)
        '''
        super(Time2Vec, self).__init__()
        if activation == 'sin':
            self.activation = torch.sin
        else:
            self.activation = torch.cos
        self.out_features = hidden_dim
        self.fc1 = nn.Linear(hidden_dim, 2)
    def forward(self, x):
        # 获取x的尺寸信息
        batch_size = x.shape[0]
        sentence_len = x.shape[1]
        in_features = x.shape[2]
        # 初始化权重和偏置
        self.w0 = nn.parameter.Parameter(torch.randn(batch_size, in_features, 1))
        self.b0 = nn.parameter.Parameter(torch.randn(batch_size,sentence_len, 1))
        self.w = nn.parameter.Parameter(torch.randn(batch_size, in_features, self.out_features - 1))
        self.b = nn.parameter.Parameter(torch.randn(batch_size,sentence_len, in_features - 1))
        # 运算
        v1 = self.activation(torch.matmul(x, self.w) + self.b)
        v2 = torch.matmul(x, self.w0) + self.b0
        v3 = torch.cat([v1, v2], -1)
        x = self.fc1(v3)
        return x

举个例子

if __name__ == '__main__':
   time2vec = Time2Vec("sin", 5)
   # batch_sizex句长x特征数量
   n = torch.randn((3, 32, 5))
   m = time2vec(n)

你可能感兴趣的:(深度学习,深度学习,pytorch,transformer)