- yolov7的参数量、计算量、 parameters、 parameters网络结构怎么查看
qhchao
YOLO
一、首先找到YOLOv7的models文件夹,找到yolo脚本,点击它。2.将yolo脚本点开后,拉倒最下面。将cfg后面的·参数更改一下,运行yolo.py脚本,就可以看到参数量和计算量等参数啦
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- yolo7 自定义数据训练
漫欣
深度学习人工智能
数据打标labelimg预定义标签格式namelabel数据集定义文件errimg.yamltrain:/home/kean/works/yolov7/dataset/train.txtval:/home/kean/works/yolov7/dataset/val.txt#numberofclassesnc:1#classnamesnames:["error_dialog"]数据定义文件train
- 目标检测 | yolov8 原理和介绍
hero_hilog
目标检测AIYOLO目标检测
相关系列:目标检测|yolov1原理和介绍目标检测|yolov2/yolo9000原理和介绍目标检测|yolov3原理和介绍目标检测|yolov4原理和介绍目标检测|yolov5原理和介绍目标检测|yolov6原理和介绍目标检测|yolov7原理和介绍目标检测|yolov8原理和介绍目标检测|yolov9原理和介绍目标检测|yolov10原理和介绍IEEE链接:https://ieeexplore
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- 极市平台 | 卡车货车、野外火灾、抽烟识别等开源数据集资源汇总
双木的木
深度学习拓展阅读数据收集数据分析机器学习人工智能python深度学习计算机视觉
本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。原文链接:卡车货车、野外火灾、抽烟识别等开源数据集资源汇总最近正好在做这方面的项目。本文收集了一些卡车货车、抽烟和野外火灾等开源数据集资源,均附有下载链接。1卡车倾倒建筑垃圾数据集下载链接:http://suo.nz/2nVNKH用于检测卡车倾倒建筑垃圾的数据集。大多数图像是从互联网或视频中删除的。使用yolov7训练过,模型性能:ma
- AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统
Together_CZ
YOLO
去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基
- self.matrix[gc, detection_classes[m1[j]]] += 1 # correct IndexError: index 25 is out of bounds for
阿维的博客日记
计算机视觉YoloV7权重文件
加载权重文件错误了,我直接用YoloV7的权重文件跑的测试,然后在自定义的数据集里面测试,但是自定义的数据集的类别和YoloV7自带的权重pt文件不一致,因此报错,接着我在命令行Python的parser解析器的–weights里面指定了自己训练出来的权重文件就解决了报错!
- yolov7中的mosaic增强实现原理
chen_znn
目标检测YOLO目标检测深度学习python
yolov7源码链接:GitHub-WongKinYiu/yolov7:Implementationofpaper-YOLOv7:Trainablebag-of-freebiessetsnewstate-of-the-artforreal-timeobjectdetectors一、mosaic增强的总体思想1、构建一个画布s=self.img_sizeimg4=np.full((s*2,s*2,i
- 基于YOLOv7算法的高精度实时海上船只目标检测识别系统(PyTorch+Pyside6+YOLOv7)
BestSongC
YOLO算法目标检测深度学习YOLOv8YOLOv7
摘要:基于YOLOv7算法的高精度实时海上船只目标检测系统可用于日常生活中检测与定位海上船只目标,此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别,同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算法来训练数据集,使用Pysdie6框架来搭建桌面页面系统,支持PT、ONNX等模型权重作为系统的预测模型加载。本系统实现的功能包括:模型权重的选择与初始化;检测置信
- 基于YOLOv8的船舶目标检测系统(Python源码+Pyqt6界面+数据集)
AI小怪兽
深度学习实战应用案列108篇人工智能深度学习机器学习YOLO计算机视觉开发语言
博主简介AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;原创自研系列,2024年计算机视觉顶会创新点《YOLOv8原创自研》《YOLOv5原创自研》《YOLOv7原创自研》23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高《YOLOv8魔术师》《YOL
- AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统
Together_CZ
YOLO
去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基
- 【issue-YOLO】自定义数据集训练YOLO-v7 Segmentation
斜月三星0727
issueYOLO
1.拉取代码创建环境执行nvidia-smi验证cuda环境是否可用;拉取官方代码;clone官方代码仓库gitclonehttps://github.com/WongKinYiu/yolov7;从main分支切换到u7分支cdyolov7&&gitcheckout44f30af0daccb1a3baecc5d80eae22948516c579;(YOLO_v5的所有视觉任务在同一个代码仓库中,Y
- 《YOLOv5原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLOv5原创自研YOLO
YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.html全网独家首发创新(原创),适合paper!!!2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络!!!重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Ba
- 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO小目标检测目标跟踪算法人工智能目标检测YOLO深度学习计算机视觉
Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!专栏介绍:✨✨✨解决小目标检测难点并提升小目标检测性能;小目标、遮挡
- 《YOLOv8魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLOv8魔术师YOLO算法人工智能深度学习目标检测
Yolov8魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!专栏介绍:✨✨✨原创魔改网络、复现前沿论文,组合优化创新小目标、遮挡物、难样本性能提升持
- 《YOLOv5/YOLOv7魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO计算机视觉机器学习深度学习人工智能
YOLOv5/YOLOv7魔术师,独家首发创新(原创),持续更新,适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!专栏介绍:✨✨✨原创魔改网络、复现前沿论文,组合优化创新小目标、遮挡物、难
- 基于YOLOv8的足球赛环境下足球目标检测系统(Python源码+Pyqt6界面+数据集)
AI小怪兽
深度学习实战应用案列108篇YOLO目标检测python计算机视觉深度学习人工智能
博主简介AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;原创自研系列,paper级别创新,2024年计算机视觉顶会创新点《YOLOv8原创自研》《YOLOv5原创自研》《YOLOv7原创自研》23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高《YOLO
- 海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(12)
LittroInno
YOLO人工智能hi3516dv500
上一篇用MindStudio转换完yolov8的om模型,准备在板卡里进行推理验证了。我这里用的是我们自己的Tofu5m模块,40mm×40mm含外壳尺寸。可以输入网络RTSP视频流直接进行推理。这次用hi3516dv500版本的Tofu5m模块。SDK里的demo部分是H.264视频输入,为了保持一致来验证,先改成H.264的视频流文件。这里采用FFMPEG方式把本地文件转成H.264流出来。f
- 【YOLO系列算法俯视视角下舰船目标检测】
stsdddd
YOLO目标检测目标检测YOLO算法目标检测
YOLO系列算法俯视视角下舰船目标检测数据集和模型YOLO系列算法俯视视角下舰船目标检测YOLO系列算法俯视视角下舰船目标检测可视化结果数据集和模型数据和模型下载:YOLOv6俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据YOLOv7俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据YOLOv8俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据集
- YOLOv7独家原创改进:SPPF原创自研创新 | SPPF创新结构,重新设计全局平均池化层和全局最大池化层,增强全局视角信息和不同尺度大小的特征
AI小怪兽
YOLOv7原创自研python开发语言人工智能算法机器学习计算机视觉YOLO
本文原创自研创新改进:SPPF_improve利用全局平均池化层和全局最大池化层,加入一些全局背景信息和边缘信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响强烈推荐,适合直接使用,paper创新级别在多个数据集验证涨点,尤其对存在多个尺度的数据集涨点明显收录YOLOv7原创自研https://blog.csdn.net/m0_63774211/category_12511937.html全
- [C#]winform部署yolov7+CRNN实现车牌颜色识别车牌号检测识别
FL1623863129
C#YOLO
【官方框架地址】https://github.com/WongKinYiu/yolov7.git【框架介绍】Yolov7是一种目标检测算法,全称YouOnlyLookOnceversion7。它是继Yolov3和Yolov4之后的又一重要成果,是目标检测领域的一个重要里程碑。Yolov7在算法结构上继承了其前作Yolov3和Yolov4的设计思想,但在许多方面进行了优化和改进。它采用了深度学习技术
- 海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(5)
LittroInno
YOLO海思hi3516hi3519
配置好环境的虚拟机可出售,需要可私信联系。SD3403/SS928/926SDK环境虚拟机160G移动硬盘,可直接拷贝到本地VMware直接打开SD3403/SS928/926模型转换虚拟机160G移动硬盘,可直接拷贝到本地VMware直接打开Hi3516dv500/Hi3519DV500SDK环境虚拟机160G移动硬盘,可直接拷贝到本地VMware直接打开Hi3516dv500/Hi3519DV
- 海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(11)
LittroInno
目标识别yolov8hi3516dv500
上一篇中讲到,如何做yolov8模型的onnx转换,这一篇讲讲如何把onnx模型转成om模型。这里有配置好环境的虚拟机,减少环境配置的麻烦,需要付费获取的可私信联系。SD3403/SS928/926SDK环境虚拟机160G移动硬盘,可直接拷贝到本地VMware直接打开SD3403/SS928/926模型转换虚拟机160G移动硬盘,可直接拷贝到本地VMware直接打开Hi3516dv500/Hi35
- ubuntu使用YOLOv7训练自己的数据集
谷溪m
人工智能
目录一、准备深度学习环境二、 准备自己的数据集1、创建数据集 2、转换数据格式 3、配置文件三、模型训练1、下载预训练模型2、训练四、模型测试五、模型推理一、准备深度学习环境下载yolov7代码二、准备自己的数据集一般标注的数据格式是VOC,而YOLOv7能够直接使用的是YOLO格式的数据,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv7进行使用。(数据集已经是yolo格式的直接跳过)
- yolov7配置环境全过程,写给自己(小白级别)
夏456
YOLO
需要的下载pytorch版本以及cuda和cudnn的链接,直接下载使用即可,然后需要的python是3.7版本的即可https://download.pytorch.org/whl/lts/1.8/cu111/torch-1.8.2%2Bcu111-cp37-cp37m-win_amd64.whlhttps://download.pytorch.org/whl/lts/1.8/torchaudi
- YOLOv7调用摄像头检测报错解决
KongTiaoXuLun
YOLO
yolov7detect.py文件调用本地摄像头,把source参数设为0parser.add_argument('--source',type=str,default='0',help='source')#file/folder,0forwebcam报错:cv2.error:OpenCV(3.4.2)一堆地址:Thefunctionisnotimplemented.Rebuildthelibra
- 【目标检测】YOLOv7算法实现(二):正样本匹配(SimOTA)与损失计算
初初初夏_
YOLO算法实现目标检测YOLOyolov7SimOTA损失计算
本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralyticsYOLO源码Github,删减了源码中部分内容,满足个人科研需求。 本篇文章在YOLOv5算法实现的基础上,进一步完成YOLOv7算法的实现。YOLOv7相比于YOLOv5,最主要的不同之处如下:模型结构:引进了更为高效的特征提取模块(ELAN)、下采样模块(MP),不同的空
- Yolov7, Yolov8使用
qq_478377515
YOLO
YOLOV71.安装和测试:【小白教学】如何用YOLOv7训练自己的数据集-知乎YOLOv7——训练自己的数据集-代码网condacreate--name=yolov7python=3.8#theversionofyourpython3***这里需要注意如果torch和torchvion版本太高,会导致GPU不可用,因为GPUdrive版本太低。可以使用低版本的:pipinstalltorch==
- 基于YOLOv5、v7、v8的竹签计数系统的设计与实现
心无旁骛~
YOLO实战笔记深度学习之目标检测YOLO
文章目录前言效果演示一、实现思路①算法原理②程序流程图二、系统设计与实现三、模型评估与优化①Yolov5②Yolov7③Yolov8四、模型对比前言该系统是一个综合型的应用,基于PyTorch框架的YOLOv5、YOLOv7和YOLOv8,结合了Django后端和Vue3前端,为竹签生成工厂和串串香店铺提供了一套全面而强大的实时监测与分析解决方案。系统主要特色在于实时目标检测和位置追踪,支持用户通
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多