李宏毅《机器学习/机器学习》笔记 P3&P4

P3 回归

回归定义

Regression 就是找到一个函数 function ,通过输入特征 xx,输出一个数值 Scalar

应用举例

  • 股市预测(Stock market forecast)
    • 输入:过去10年股票的变动、新闻咨询、公司并购咨询等
    • 输出:预测股市明天的平均值
  • 自动驾驶(Self-driving Car)
    • 输入:无人车上的各个sensor的数据,例如路况、测出的车距等
    • 输出:方向盘的角度
  • 商品推荐(Recommendation)
    • 输入:商品A的特性,商品B的特性
    • 输出:购买商品B的可能性
  • Pokemon精灵攻击力预测(Combat Power of a pokemon):
    • 输入:进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)
    • 输出:进化后的CP值

模型步骤

  • step1:模型假设,选择模型框架(线性模型)
  • step2:模型评估,如何判断众多模型的好坏(损失函数)
  • step3:模型优化,如何筛选最优的模型(梯度下降)

Step 1:模型假设 - 线性模型

一元线性模型(单个特征)

你可能感兴趣的:(李宏毅机器学习笔记,自动驾驶,机器学习,人工智能)