论文链接:https://arxiv.org/pdf/1409.4842.pdf
input
↓
Stem
↓
Inception-resnet-A * 5
↓
Reduction-A
↓
Inception-resnet-B * 10
↓
Reduction-B
↓
Inception-resnet-C * 5
↓
AvgPooling
↓
Dropout(0.8)
↓
softmax
(1) Stem结构
input (160*160*3)
↓
Conv(32,3*3,2,v) (79*79*32)
↓
Conv(32,3*3,v) (77*77*32)
↓
Conv(64,3*3) (77*77*64)
↓
MaxPool(s=2,v) (38*38*64)
↓
Conv(80,1*1) (38*38*80)
↓
Conv(192,3*3,v) (36*36*192)
↓
Conv(256,3*3,2,v) (17*17*256)
(2) Stem代码
inputs = Input(shape=input_shape)
# 160*160*3 -> 77,77,64
x = conv2d_bn(inputs,32,3,strides=2,padding='valid') # (160-3+1)/2=158/2=79
x = conv2d_bn(x,32,3,padding='valid') # 79-2=77
x = conv2d_bn(x,64,3) # 77/1
# 77,77,64 -> 38,38,64
x = MaxPooling2D(3,strides=2)(x) # (77-3)/2+1=38
# 38*38*64 -> 17,17,256
x = conv2d_bn(x,80,1,padding='valid') # (38-1+1)/1 = 38
x = conv2d_bn(x,192,3,padding='valid') # (38-3+1)/1 = 36
x = conv2d_bn(x,256,3,strides=2,padding='valid') # (36-3+1)/2 = 17
input
↓
input->conv(32,1)->p1
input->conv(32,1)->conv(32,3)->p2
input->conv(32,1)->conv(32,3)->conv(32,3)->p3
↓
concatenate([p1,p2,p3])->conv(256,1) + input->Relu
(2) Inception-resnet-A代码
branch_0 = conv2d_bn(x, 32, 1)
branch_1 = conv2d_bn(x, 32, 1)
branch_1 = conv2d_bn(branch_1, 32, 3)
branch_2 = conv2d_bn(x, 32, 1)
branch_2 = conv2d_bn(branch_2, 32, 3)
branch_2 = conv2d_bn(branch_2, 32, 3)
branches = [branch_0, branch_1, branch_2]
mixed = Concatenate(axis=channel_axis)(branches)
up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True)
up = Lambda(scaling,
output_shape=K.int_shape(up)[1:],
arguments={'scale': scale})(up)
x = add([x, up])
if activation is not None:
x = Activation(activation)(x)
(1) Reduction-A结构
input
↓
input->conv(384,3,s=2,v)->p1
input->conv(192,1)->conv(192,3)->conv(256,3,2,v)->p2
input->MaxPool(3,3,v)->p3
↓
concatenate([p1,p2,p3])
(2) Reduction-A代码
branch_0 = conv2d_bn(x, 384, 3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1))
branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 2))(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches)
(1) Inception-resnet-B结构
input
↓
input->conv(128,1)->p1
input->conv(128,1)->conv(128,1*7)->conv(128,7*1)->p2
↓
concatenate([p1,p2])->conv(896,1) + input->Relu
(2) Inception-resnet-B代码
branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1))
branch_1 = conv2d_bn(branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1))
branches = [branch_0, branch_1]
mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches)
up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True,
name=name_fmt('Conv2d_1x1'))
up = Lambda(scaling,
output_shape=K.int_shape(up)[1:],
arguments={'scale': scale})(up)
x = add([x, up])
if activation is not None:
x = Activation(activation, name=name_fmt('Activation'))(x)
input
↓
input->conv(256,1)->conv(384,3,s=2,v)->p1
input->conv(256,1)->conv(256,3,2,v)->p2
input->conv(256,1)->conv(256,3)->conv(256,3,2,v)->p3
input->MaxPool(3,2,v)->p4
↓
concatenate([p1,p2,p3,p4])
(2) Reduction-B代码
name_fmt = partial(_generate_layer_name, prefix='Mixed_7a')
branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0))
branch_0 = conv2d_bn(branch_0,384,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1))
branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 256, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 2))
branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 3))(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches)
input
↓
input->conv(128,1)->p1
input->conv(192,1)->conv(192,1*3)->conv(128,3*1)->p2
↓
concatenate([p1,p2])->conv(1792,1) + input->Relu
(2) Inception-resnet-C代码
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1))
branch_1 = conv2d_bn(branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1))
branches = [branch_0, branch_1]
mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches)
up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True,
name=name_fmt('Conv2d_1x1'))
up = Lambda(scaling,
output_shape=K.int_shape(up)[1:],
arguments={'scale': scale})(up)
x = add([x, up])
if activation is not None:
x = Activation(activation, name=name_fmt('Activation'))(x)
(1) Inception-ResNetV1网络代码
from functools import partial
from keras.models import Model
from keras.layers import Activation
from keras.layers import BatchNormalization
from keras.layers import Concatenate
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers import Lambda
from keras.layers import MaxPooling2D
from keras.layers import add
from keras import backend as K
def scaling(x, scale):
return x * scale
def _generate_layer_name(name, branch_idx=None, prefix=None):
if prefix is None:
return None
if branch_idx is None:
return '_'.join((prefix, name))
return '_'.join((prefix, 'Branch', str(branch_idx), name))
def conv2d_bn(x,filters,kernel_size,strides=1,padding='same',activation='relu',use_bias=False,name=None):
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name=name)(x)
if not use_bias:
x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001,
scale=False, name=_generate_layer_name('BatchNorm', prefix=name))(x)
if activation is not None:
x = Activation(activation, name=_generate_layer_name('Activation', prefix=name))(x)
return x
def _inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
channel_axis = 3
if block_idx is None:
prefix = None
else:
prefix = '_'.join((block_type, str(block_idx)))
name_fmt = partial(_generate_layer_name, prefix=prefix)
if block_type == 'Block35':
branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0c_3x3', 2))
branches = [branch_0, branch_1, branch_2]
elif block_type == 'Block17':
branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1))
branch_1 = conv2d_bn(branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1))
branches = [branch_0, branch_1]
elif block_type == 'Block8':
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1))
branch_1 = conv2d_bn(branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1))
branches = [branch_0, branch_1]
mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches)
up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True,
name=name_fmt('Conv2d_1x1'))
up = Lambda(scaling,
output_shape=K.int_shape(up)[1:],
arguments={'scale': scale})(up)
x = add([x, up])
if activation is not None:
x = Activation(activation, name=name_fmt('Activation'))(x)
return x
def InceptionResNetV1(input_shape=(160, 160, 3),
classes=128,
dropout_keep_prob=0.8):
channel_axis = 3
inputs = Input(shape=input_shape)
# 160,160,3 -> 77,77,64
x = conv2d_bn(inputs, 32, 3, strides=2, padding='valid', name='Conv2d_1a_3x3')
x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3')
x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3')
# 77,77,64 -> 38,38,64
x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x)
# 38,38,64 -> 17,17,256
x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1')
x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3')
x = conv2d_bn(x, 256, 3, strides=2, padding='valid', name='Conv2d_4b_3x3')
# 5x Block35 (Inception-ResNet-A block):
for block_idx in range(1, 6):
x = _inception_resnet_block(x,scale=0.17,block_type='Block35',block_idx=block_idx)
# Reduction-A block:
# 17,17,256 -> 8,8,896
name_fmt = partial(_generate_layer_name, prefix='Mixed_6a')
branch_0 = conv2d_bn(x, 384, 3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1, 192, 3, name=name_fmt('Conv2d_0b_3x3', 1))
branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1))
branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 2))(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches)
# 10x Block17 (Inception-ResNet-B block):
for block_idx in range(1, 11):
x = _inception_resnet_block(x,
scale=0.1,
block_type='Block17',
block_idx=block_idx)
# Reduction-B block
# 8,8,896 -> 3,3,1792
name_fmt = partial(_generate_layer_name, prefix='Mixed_7a')
branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0))
branch_0 = conv2d_bn(branch_0,384,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0))
branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1))
branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1))
branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2))
branch_2 = conv2d_bn(branch_2, 256, 3, name=name_fmt('Conv2d_0b_3x3', 2))
branch_2 = conv2d_bn(branch_2,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 2))
branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 3))(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches)
# 5x Block8 (Inception-ResNet-C block):
for block_idx in range(1, 6):
x = _inception_resnet_block(x,
scale=0.2,
block_type='Block8',
block_idx=block_idx)
x = _inception_resnet_block(x,scale=1.,activation=None,block_type='Block8',block_idx=6)
# 平均池化
x = GlobalAveragePooling2D(name='AvgPool')(x)
x = Dropout(1.0 - dropout_keep_prob, name='Dropout')(x)
# 全连接层到128
x = Dense(classes, use_bias=False, name='Bottleneck')(x)
bn_name = _generate_layer_name('BatchNorm', prefix='Bottleneck')
x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False,
name=bn_name)(x)
# 创建模型
model = Model(inputs, x, name='inception_resnet_v1')
return model