输入格式与matlab的linprog公式类似链接,之前还写过这个已经忘了,可以参考,但是这个的写法要求不等式必须是≤,有需求可以自己变通
单纯形法的迭代公式建议看厦大运筹学之规划论
剩下的实现和原理之后再写,这个确实挺好用的
我把例子找了三个朴素的例子做了实现,结果还可以
import numpy as np
def LinearProgram(f, A, b, Aeq=-1, beq=-1):
"""
传入matlab样式参数,通过判断选择单纯形法,选择性添加人工法,对偶问题求解
:param f: 目标函数
:param A: 不等式约束系数矩阵
:param b: 不等式约束常数矩阵
:param Aeq: 等式约束系数矩阵
:param beq: 等式约束常数矩阵
:return: 若有值则返回函数值与对应基变量
"""
# 只有不等式约束采用单纯形法基础方法解决,先进行
if Aeq == -1:
# 构造基向量组
basic_vector = np.eye(A.shape[0])
sheet = np.hstack((A, basic_vector))
# 标记
basic_index = [i for i in range(A.shape[1], A.shape[0] + A.shape[1])]
# 连接
f = np.append(f, np.zeros((1, A.shape[0])))
ans = SimplexMethod(f, sheet, b, basic_index)
if ans[0] == 3:
print(ans[1])
else:
x_variable = np.zeros((f.shape[0], 1))
for i in range(len(ans[2])):
x_variable[ans[2][i]] = ans[3][i]
fval = np.dot(f, x_variable)
if ans[0] == 1:
print("{0};\n函数取值为{1};\n最终函数值为{2}.\n"
.format(ans[1], ' '.join(map(str, x_variable)), fval))
else:
print("{0};\n函数取值为{1};\n最终函数值为{2}.\n"
.format(ans[1], ' '.join(map(str, x_variable)), fval))
return 1, 2
def SimplexMethod(f, sheet, b, index):
"""
朴素单纯形法求解
:param f: 处理过的函数项
:param sheet: 表
:param b: 常数项
:param index: 基解变量index
:return: 结果
"""
basic_c = f[index]
while True:
# 生成zeta
zeta = np.full(sheet.shape[1], np.nan)
for i in range(f.shape[0]):
if i not in index:
zeta[i] = f[i] - np.dot(basic_c, sheet[:, i])
# 找出进基下标
push_in_index = np.nanargmin(zeta)
if zeta[push_in_index] > 0:
return [1, "唯一最优解", index, b]
elif zeta[push_in_index] >= 0:
return [2, "无穷最优解", index, b]
# 生成theta
theta = np.full(len(index), np.nan)
for i in range(len(index)):
if sheet[i, push_in_index] > 0:
theta[i] = b[i] / sheet[i, push_in_index]
# 找出出基下标
try:
push_out_index = np.nanargmin(theta)
except ValueError:
return [3, "无最优解/有无界解"]
# 换基
index[push_out_index] = push_in_index
basic_c[push_out_index] = f[push_in_index]
# 自身单位化
unit_change = sheet[push_out_index, push_in_index]
sheet[push_out_index] /= unit_change
b[push_out_index] /= unit_change
# 整体单位化
for i in range(sheet.shape[0]):
if i == push_out_index:
continue
full_change = sheet[i, push_in_index]
sheet[i] -= full_change * sheet[push_out_index]
b[i] -= full_change * b[push_out_index]
if __name__ == '__main__':
f = np.array([-1, -2])
A = np.array([[1, 0], [0, 1], [1, 2]])
b = np.array([4, 3, 8])
# Aeq = np.array([])
# beq = np.array([])
LinearProgram(f, A, b)
f = np.array([-6, -4])
A = np.array([[2, 3], [4, 2]])
b = np.array([100, 120])
# Aeq = np.array([])
# beq = np.array([])
LinearProgram(f, A, b)
f = np.array([-2, -1])
A = np.array([[-1, 1], [2, -5]])
b = np.array([5, 10])
# Aeq = np.array([])
# beq = np.array([])
LinearProgram(f, A, b)