作业3:分别使用numpy和pytorch实现FNN例题

  1. 过程推导 - 了解BP原理
  2. 数值计算 - 手动计算,掌握细节
  3. 代码实现 - numpy手推 + pytorch自动

代码实现:

作业3:分别使用numpy和pytorch实现FNN例题_第1张图片

作业3:分别使用numpy和pytorch实现FNN例题_第2张图片

  1.  对比【numpy】和【pytorch】程序,总结并陈述。
  2. 激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
  3. 激活函数Sigmoid改变为Relu,观察、总结并陈述。
  4. 损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
  5. 损失函数MSE改变为交叉熵,观察、总结并陈述。
  6. 改变步长,训练次数,观察、总结并陈述。
  7. 权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
  8. 权值w1-w8初始值换为0,观察、总结并陈述。
  9. 全面总结反向传播原理和编码实现,认真写心得体会。
     

过程推导:

作业3:分别使用numpy和pytorch实现FNN例题_第3张图片

数值计算:

 作业3:分别使用numpy和pytorch实现FNN例题_第4张图片

 代码实现:

使用numpy实现

import numpy as np
 
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("输入值 x0, x1:")
print(x1, x2)
print("输出值 y0, y1:")
print(y1, y2)
 
 
def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a
 
 
def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)
 
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)
 
    print("正向计算:预测值o1 ,o2为")
    print(round(out_o1, 5), round(out_o2, 5))
 
    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2
 
    print("损失函数(均方误差):",round(error, 5))
 
    return out_o1, out_o2, out_h1, out_h2
 
 
def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2
 
    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
 
    d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2
 
    print("反向传播:误差传给每个权值", round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))
 
    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
 
 
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8
 
 
if __name__ == "__main__":
 
    print("更新前的权值:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))
 
    for i in range(1):
        print("第" + str(i+1) + "轮:")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
 
    print("更新后的权值w:", round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

结果:

作业3:分别使用numpy和pytorch实现FNN例题_第5张图片

 使用pytorch实现

import torch
 
x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True
 
 
def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a
 
 
def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)
 
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)
 
    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)
 
    return out_o1, out_o2
 
 
def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss
 
 
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8
 
 
if __name__ == "__main__":
 
    print("=====更新前的权值=====")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
 
    for i in range(1):
        print("=====第" + str(i+1) + "轮=====")
        L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
        L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
        print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
              round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
              round(w8.grad.item(), 2))
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
 
    print("更新后的权值")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

结果:

作业3:分别使用numpy和pytorch实现FNN例题_第6张图片

 1.对比【numpy】和【pytorch】程序,总结并陈述。

pytorch在神经网络中可以代替numpy,在程序中改变训练轮数两种实验结果依然接近,但pytorch部分结果精确度更高。

训练轮数为10:

numpy:

作业3:分别使用numpy和pytorch实现FNN例题_第7张图片

 pytorch:

2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

使用Sigmoid函数和使用Pytorch自带函数torch.sigmoid()没有什么明显差距。

3.激活函数Sigmoid改变为Relu,观察、总结并陈述。

def relu(z):
    return np.maximum(0, z)

作业3:分别使用numpy和pytorch实现FNN例题_第8张图片

作业3:分别使用numpy和pytorch实现FNN例题_第9张图片

(1)Relu函数均方误差降低速度快,收敛速度更优。

(2)Relu函数可以防止梯度弥散。

(3)  Relu函数会输出零值,导致网络稀疏,即稀疏激活性,减少了参数的相互依存关系,缓解了过拟合问题的发生。

4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss_func = torch.nn.MSELoss() # 创建损失函数
    y_pred = torch.cat((y1_pred, y2_pred), dim=0) # 将y1_pred, y2_pred合并成一个向量
    y = torch.cat((y1, y2), dim=0) # 将y1, y2合并成一个向量
    loss = loss_func(y_pred, y) # 计算损失
    print("损失函数(均方误差):", loss.item())
    return loss

训练轮数较低时自带函数和原先函数运行结果相同。

5.损失函数MSE改变为交叉熵,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
    y_pred = torch.stack([y1_pred, y2_pred], dim=1)
    y = torch.stack([y1, y2], dim=1)
    loss = loss_func(y_pred, y) # 计算
    print("损失函数(交叉熵损失):", loss.item())
    return loss

 出现负数,可以看出交叉熵损失函数更实用于分类,而不是预测。

6.改变步长,训练次数,观察、总结并陈述。

步长为1:

 

 步长为2:

 步长为1比步长为2训练效果更好。

7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

​w1, w2, w3, w4, w5, w6, w7, w8 = torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1)

训练轮数为1:

训练轮数为10:

可以看出权值的改变,而收敛速度几乎无影响 。

8.权值w1-w8初始值换为0,观察、总结并陈述。

w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0])

 

心得体会:

通过本次实验,我加深了对反向传播算法的理解,以及激活函数,损失函数,步长,训练次数,权值不同对实验结果的影响及其在前馈神经网络中的作用。在神经网络中,pytorch框架可以代替numpy。

你可能感兴趣的:(numpy,pytorch,python)