- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 架构开场介绍&&环境准备
Jsben
架构linux
第0章学习方法的变化1.第一阶段学习方法1.记命令80-1502.记参数常用3-5个3.练习考试题手写4.回顾总结2.第二阶段学习方法1.理解思考提问2.应用场景干嘛用的怎么用3.安装部署配置文件启动测试关闭4.各种报错看日志看日志看日志收集整理5.英文单词量积累不然看不懂报错第1章综合架构开场介绍中小规模网站架构组成顾客–用户访问网站的人员保安–防火墙(firewalld)进行访问策略控制迎宾–
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- Nginx UI:一款开源的Nginx可视化管理界面,让你轻松管理nginx的配置
小华同学ai
nginxui开源
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和工作学习方法NginxUI是由0xJacky和Hintay共同开发的一款Nginx网络管理界面。它旨在为Nginx提供一个易于使用的图形界面,让用户可以在线查看服务器状态、编辑配置文件、管理网站和证书等。想要一睹为快?访问https://demo.nginxui.com/使用以下凭据登录:用户名:admin密码:admin特色功
- C#的学习方法和思路,全部整理在这了!
编程乐趣
c#学习方法开发语言
大家好,我是编程乐趣。今天梳理下,我从写公众号以来,发表过的有关学习编程的自学方法、架构、学习路线、重构、编程经验等内容,希望对大家有点启发。一、自学编程的方法用这个方法学习C#的,一年后都变成高级工程师了!自学C#,要懂得善用MSDN自学C#,要懂得用好对象浏览器C#自学建议:避开新手易犯的错误一个很简单却能让你快速掌握C#的方法二、学习架构的思考DDD与三层架构,一定就是DDD好?程序员,真有
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- 学习AI大模型的小白入门建议和具体的学习方法推荐
aFakeProgramer
机器学习人工智能人工智能
深度思考我是一名在汽车行业工作的嵌入式系统工程师,现在我想进入人工智能领域,特别是大型语言模型。说到人工智能,我是一个完全的新手,所以我需要弄清楚从哪里开始。让我们把它分解一下。首先,我知道嵌入式系统涉及许多低级编程、微控制器、实时操作系统等。人工智能,特别是像GPT这样的大型模型,似乎处于另一端,处理高级计算、海量数据集和复杂算法。这里肯定有一个学习曲线。我可能应该从了解机器学习的基础知识开始。
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 史上最全!Python爬虫requests库(附案例)
疯狂的超级玛丽
PythonPython学习Python入门python爬虫开发语言学习Python基础python自学
1.requests库简介如果你正在学习Python并且找不到方向的话可以试试我这一份学习方法+籽料呀!点击领取(不要米米)Requests是一个为人类设计的简单而优雅的HTTP库。requests库是一个原生的HTTP库,比urllib3库更为容易使用。requests库发送原生的HTTP1.1请求,无需手动为URL添加查询串,也不需要对POST数据进行表单编码。相对于urllib3库,requ
- 2019考研 | 西交大软件工程
笔者阿蓉
本科背景:某北京211学校电子信息工程互联网开发工作两年录取结果:全日制软件工程学院分数:初试350+复试笔试80+面试85+总排名:100+从五月份开始脱产学习,我主要说一下专业课和复试还有我对非全的一些看法。【数学100+】张宇,张宇,张宇。跟着张宇学习,入门视频刷一遍,真题刷两遍,错题刷三遍。书刷N多遍。从视频开始学习,是最快的学习方法。5-7月份把主要是数学学好,8-9月份开始给自己每个周
- C语言---程序设计练习题目及学习方法1
Wanyu677
C语言c语言学习方法算法
学习方法要多练习在这些题目中的代码和题目自己动手去敲练习也是在熟悉语法,写代码第一步就是熟悉语法练习是在锻炼编程思维,把实际问题转换为代码的能力学会画图画图去理解内存,理解指针这些比较难懂的知识画图可以更好的理清思路辅助理解,强化理解学会调试借助调试,更好的理解代码和感知代码找出代码中的bug和程序逻辑(1)自增自减运算符inta=5,b,c,i=10;b=a++;c=++b;printf("a=
- 嵌入式单片机中数码管基本实现方法
嵌入式开发星球
单片机项目实战操作之优秀单片机
1.点亮数码管本节课利用已经学习的LED知识去控制一个8位数码管。本节的原理比较简单。不需要多少时间讲。更多时间是跟大家一起编码调试,从中学习一些编码思路和学习方法。1.1.什么是数码管数码管是什么?下图就是一个数码管从硬件上个看,其实就是8个LED组合在一起。8个LED应该有16个引脚,但是数码管上只有10个引脚。为什么呢?请看下图:1个LED有两个引脚,要控制LED,1个引脚接控制信号,另外一
- 11.学无止境
萌柳青青
人生就像是坐过山车,跌跌宕宕,起起伏伏。有时候,心情平静如水;有时候,如坚石拍打浪花!好好学习天天向上这是一场经历,也是一个过程。生活如此,学习亦是如此!在不断地试错中,终于找到适合自己的学习方法及有效资源。突然发现,当你一旦决定开始做一件事并付诸于行动时,你会发现,原以为的一切问题都不是问题。忘了有多久,没有这样的一个学习冲劲了。我享受着争分夺秒与时间赛跑的日子,我享受着这种全身心投入学习的感觉
- 文本生成图像工作简述1--概念介绍和技术梳理
尹凯
姓名:尹凯学号:22011210590学院:通信工程学院原文链接:https://blog.csdn.net/air__Heaven/article/details/127302735【嵌牛导读】文本生成图像的概念介绍与技术梳理【嵌牛鼻子】文本生成图像基于深度学习的机器学习方法已经在语音、文本、图像等单一模态领域取得了巨大的成功,而同时涉及到多种输入模态的多模态机器学习研究有巨大的应用前景和广泛的
- 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习概率潜在语义分析PLSA
定义输入:设单词集合为W={ω1,ω2,⋯ ,ωM}W=\{\omega_1,\omega_2,\cdots,\omega_M\}W={ω1,ω2,⋯,ωM},文本集合为D={d1,d2,⋯ ,dN}D=\{d_1,d_2,\cdots,d_N\}D={d1,d2,⋯,dN},话题集合为Z={z1,z2,⋯ ,zN}Z=\{z_1,z_2,\cdots,z_N\}Z={z1,z2,⋯,zN},共现
- 2018-05-17
浙江路人甲
【日精进打卡第46天】姓名:杜俊杰公司:浙江省东阳市东元食品有限公司【知~学习】诵读《大学》2遍,诵读《六项精进》大纲2遍,《活法》2节【经典名句分享】不奋斗,你的才华如何配上你的任性;不奋斗,你的脚步如何赶上父母老去的速度;不奋斗,世界那么大,你靠什么去看看。【行~实践】一、修身:(1)学习,朗读《活法》二、齐家:(1)晚上带娃三、建功:1.与领导沟通、交流学习方法事宜。{积善}:1.坚持每日一
- 读《给青年诗人的十封信》1
纳文yoyo
想学习写作又无从下笔,即便写出来自己也不确定是好还是不好,很渴望得到他人的认可。于是,就买了一些关于写作的书籍看,其中一些很好的思维方式和学习方法,逐步摘录出来分享给大家,同时也鞭策自己,希望在这个道路上共同收获,共同成长。《给青年诗人的十封信》这本书不厚,也分外好读,是奥地利作家Rainer·Maria·Rilke(莱内·马利亚·里尔克)写给诗人的回信,信中针对年轻的创作者遇到的困惑和问题,给予
- 反思的魔力:用语言的力量强化AI智能体
步子哥
人工智能机器学习
在浩瀚的代码海洋中,AI智能体就像初出茅庐的航海家,渴望探索未知的宝藏。然而,面对复杂的编程任务,他们常常迷失方向。今天,就让我们跟随“反思”的灯塔,见证AI智能体如何通过语言的力量,点亮智慧的明灯,成为代码世界的征服者!智能体的困境近年来,大型语言模型(LLM)在与外部环境(如游戏、编译器、API)交互的领域中大放异彩,化身为目标驱动的智能体。然而,传统的强化学习方法如同一位严苛的训练师,需要大
- 坚持自己,而不是被环境改变·115天(Youtube语言学习方法)
左撇子槿希
图片发自App1.Pleaseremovetheblackpart/bit.黒い(くろい)ところは取り除(とりのぞ)いてください。2.I’mlookingoraplacetostay.泊まる(とまる)所(ところ)を探(さが)しています。3.Doyouknowwhoisthatperson?あの人は誰(だれ)か知っていますか。4.Whichrestaurantischeap?レストランはどこが安い(
- 《谈谈对“后进生”的工作》读后感
惬意小鱼
这一条建议中,苏霍姆林斯基谈的是对“后进生”的教育工作。正如他所言,在我们的教育工作中,对“后进生”的工作是“最难啃的硬骨头”之一。这样的学生,他们对教材的理解和记忆所需要的时间比一般的学生要多得多,而且遗忘得也更快。于是,在我们的教育工作中,很多老师和家长就渐渐把他们的学习引向了死记硬背的错误道路,以为多背多记就是最适合他们的学习方法了。殊不知,死记硬背的习惯,会让这些学生变得更为迟钝!对于这样
- 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习潜在狄利克雷分配LDA
定义输入:单词集合W={ω1,⋯ ,ωv,⋯ ,ωV},其中ωv是第v个单词,v=1,2,⋯ ,V,V是单词第个数。单词集合W=\{\omega_1,\cdots,\omega_v,\cdots,\omega_V\},其中\omega_v是第v个单词,v=1,2,\cdots,V,V是单词第个数。单词集合W={ω1,⋯,ωv,⋯,ωV},其中ωv是第v个单词,v=1,2,⋯,V,V是单词第个数。文
- 放慢速度,思考含义,细化理解
chuck_study
作者|士心先生来源|程序员的读书故事(公众号:pg_reading)细化思考.jpg我对阅读很感兴趣,它是我唯一知道的学习方法。除了阅读,我不知道还能做什么。如果读了又没有记住,我就不知道该怎么办了。在读过有关学习的研究资料后,我知道了除了被动地接收信息,还必须主动地做一些事。当然重要的是想出一个办法来检索记忆汇总的信息,因为这是你在考试时被要求做的事。如果你在学习时做不到这一点,那么在考试时间同
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后