● 本文为365天深度学习训练营 中的学习记录博客
● 参考文章:Pytorch实战 | 第P8天:YOLOv5-C3模块实现天气图片识别
● 原作者:K同学啊|接辅导、项目定制
● 语言环境:Python3.8
● 编译器:pycharm
● 深度学习环境:Pytorch
● 数据来源:链接: https://pan.baidu.com/s/1SEfd8mvWt7BpzmWOeaIRkQ 提取码: gdie
# -*- coding: utf-8 -*-
import copy
import torch.utils.data
from torchvision import transforms, datasets
from model import model_K, train, test
import torch.nn as nn
import torchsummary as summary
# 1、导入并处理和转换数据
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 加载数据
total_data = datasets.ImageFolder('./data/', train_transforms)
# 划分数据集
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
# 2、构建网络模型 model.py
# 3、模型训练
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using {} device".format(device))
model = model_K().to(device)
# 统计模型参数量以及其他指标
summary.summary(model, (3, 224, 224))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0
best_model = None
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer, device)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn, device)
# 保存最佳模型
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
epoch_test_acc * 100, epoch_test_loss, lr))
# 保存最佳模型
torch.save(model.state_dict(), './model/model.pth')
print('Done')
# 4、模型评估
import matplotlib.pyplot as plt
# 隐藏警告
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import torch.nn as nn
import torch
from PIL import Image
def autopad(k, p=None): # kernel, padding
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # input, output, kernel
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
# standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # input, output shorcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # input, output, number, shortcut, groups, expansion
super(C3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act = FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
# 卷积模块
self.Conv = Conv(3, 32, 3, 2)
# C3模块1
self.C3_1 = C3(32, 64, 3, 2)
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv(x)
x = self.C3_1(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
def train(dataloader, model, loss_fn, optimizer, device):
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
# 反向传播
optimizer.zero_grad() # 梯度属性归零
loss.backward()
optimizer.step() # 每一步自动更新
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
size = len(dataloader.dataset) # 训练集的大小
num_batch = len(dataloader)
train_acc /= size
train_loss /= num_batch
return train_acc, train_loss
def test(dataloader, model, loss_fn, device):
test_acc, test_loss = 0, 0
# 停止梯度更新
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
size = len(dataloader.dataset)
num_batch = len(dataloader)
test_acc /= size
test_loss /= num_batch
return test_acc, test_loss
def predict(model, img_path, transforms):
img = Image.open(img_path).convert('RGB')
plt.imshow(img)
plt.show()
img = transforms(img).unsqueeze(0)
model.eval()
ouput = model(img)
_, pred = torch.max(ouput, 1)
return pred
1、对原理的掌握不够
2、在写对一张图片predict的时候,由于失误把图片转换的尺寸本应该[224, 224]写成了[244,244],导致预测报错
错误代码:
# -*- coding: utf-8 -*-
import torch.cuda
import torchvision.transforms as transforms
from model import model_K, predict
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model_K().to(device)
model.load_state_dict(torch.load('./model/model.pth', map_location='cpu'))
img_path = './data-test/6.jpg'
pre_transforms = transforms.Compose([
transforms.Resize([244, 244]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
class_dic = {'0': 'cloudy', '1': 'rain', '2': 'shine', '3': 'sunrise'}
pred_idx = str(predict(model, img_path, pre_transforms).item())
print(class_dic[pred_idx])
调试的时候在训练的forward的x.shape变化是[32, 3, 224, 224] -> [32, 32, 112, 112]->[32, 64, 112, 112]
调试的时候在预测的forward的x.shape变化是[1, 3, 244, 244] -> [1, 32, 122, 122] ->[1, 64, 122, 122]
调试了半天,硬是没看出来。