[三十二]深度学习Pytorch-循环神经网络RNN

0. 往期内容

[一]深度学习Pytorch-张量定义与张量创建

[二]深度学习Pytorch-张量的操作:拼接、切分、索引和变换

[三]深度学习Pytorch-张量数学运算

[四]深度学习Pytorch-线性回归

[五]深度学习Pytorch-计算图与动态图机制

[六]深度学习Pytorch-autograd与逻辑回归

[七]深度学习Pytorch-DataLoader与Dataset(含人民币二分类实战)

[八]深度学习Pytorch-图像预处理transforms

[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

[十]深度学习Pytorch-transforms图像操作及自定义方法

[十一]深度学习Pytorch-模型创建与nn.Module

[十二]深度学习Pytorch-模型容器与AlexNet构建

[十三]深度学习Pytorch-卷积层(1D/2D/3D卷积、卷积nn.Conv2d、转置卷积nn.ConvTranspose)

[十四]深度学习Pytorch-池化层、线性层、激活函数层

[十五]深度学习Pytorch-权值初始化

[十六]深度学习Pytorch-18种损失函数loss function

[十七]深度学习Pytorch-优化器Optimizer

[十八]深度学习Pytorch-学习率Learning Rate调整策略

[十九]深度学习Pytorch-可视化工具TensorBoard

[二十]深度学习Pytorch-Hook函数与CAM算法

[二十一]深度学习Pytorch-正则化Regularization之weight decay

[二十二]深度学习Pytorch-正则化Regularization之dropout

[二十三]深度学习Pytorch-批量归一化Batch Normalization

[二十四]深度学习Pytorch-BN、LN(Layer Normalization)、IN(Instance Normalization)、GN(Group Normalization)

[二十五]深度学习Pytorch-模型保存与加载

[二十六]深度学习Pytorch-模型微调Finetune

[二十七]深度学习Pytorch-GPU的使用

[二十八]深度学习Pytorch-图像分类Resnet18

[二十九]深度学习Pytorch-图像分割Unet

[三十]深度学习Pytorch-图像目标检测Faster RCNN

[三十一]深度学习Pytorch-生成对抗网络GAN

[三十二]深度学习Pytorch-循环神经网络

深度学习Pytorch-循环神经网络RNN

  • 0. 往期内容
  • 1. 循环神经网络RNN定义
  • 2. RNN如何处理不定长输入?
  • 3. 训练RNN实现人名分类
  • 4. 完整代码

1. 循环神经网络RNN定义

[三十二]深度学习Pytorch-循环神经网络RNN_第1张图片

2. RNN如何处理不定长输入?

[三十二]深度学习Pytorch-循环神经网络RNN_第2张图片
[三十二]深度学习Pytorch-循环神经网络RNN_第3张图片

3. 训练RNN实现人名分类

[三十二]深度学习Pytorch-循环神经网络RNN_第4张图片
[三十二]深度学习Pytorch-循环神经网络RNN_第5张图片

4. 完整代码

rnn_demo.py

# -*- coding: utf-8 -*-
"""
# @file name  : rnn_demo.py
# @brief      : rnn人名分类
"""
from io import open
import glob
import unicodedata
import string
import math
import os
import time
import torch.nn as nn
import torch
import random
import matplotlib.pyplot as plt
import torch.utils.data
from tools.common_tools import set_seed

set_seed(1)  # 设置随机种子
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")


# Read a file and split into lines
def readLines(filename):
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]


def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters)


# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(letter):
    return all_letters.find(letter)


# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def letterToTensor(letter):
    tensor = torch.zeros(1, n_letters)
    tensor[0][letterToIndex(letter)] = 1
    return tensor


# Turn a line into a ,
# or an array of one-hot letter vectors
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor


def categoryFromOutput(output):
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i


def randomChoice(l):
    return l[random.randint(0, len(l) - 1)]


def randomTrainingExample():
    category = randomChoice(all_categories)                 # 选类别
    line = randomChoice(category_lines[category])           # 选一个样本
    category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
    line_tensor = lineToTensor(line)    # str to one-hot
    return category, line, category_tensor, line_tensor


def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)


# Just return an output given a line
def evaluate(line_tensor):
    hidden = rnn.initHidden()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    return output


def predict(input_line, n_predictions=3):
    print('\n> %s' % input_line)
    with torch.no_grad():
        output = evaluate(lineToTensor(input_line))

        # Get top N categories
        topv, topi = output.topk(n_predictions, 1, True)

        for i in range(n_predictions):
            value = topv[0][i].item()
            category_index = topi[0][i].item()
            print('(%.2f) %s' % (value, all_categories[category_index]))


def get_lr(iter, learning_rate):
    lr_iter = learning_rate if iter < n_iters else learning_rate*0.1
    return lr_iter

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.u = nn.Linear(input_size, hidden_size)
        self.w = nn.Linear(hidden_size, hidden_size)
        self.v = nn.Linear(hidden_size, output_size)

        self.tanh = nn.Tanh()
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, inputs, hidden):

        u_x = self.u(inputs)

        hidden = self.w(hidden)
        hidden = self.tanh(hidden + u_x)

        output = self.softmax(self.v(hidden))

        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)


def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()

    rnn.zero_grad()

    line_tensor = line_tensor.to(device)
    hidden = hidden.to(device)
    category_tensor = category_tensor.to(device)

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add_(-learning_rate, p.grad.data)

    return output, loss.item()


if __name__ == "__main__":
    # config
    path_txt = os.path.join(BASE_DIR, "..", "..", "data", "data", "names", "*.txt")
    all_letters = string.ascii_letters + " .,;'"
    n_letters = len(all_letters)    # 52 + 5 字符总数
    print_every = 5000
    plot_every = 5000
    learning_rate = 0.005
    n_iters = 200000

    # step 1 data
    # Build the category_lines dictionary, a list of names per language
    category_lines = {}
    all_categories = []
    for filename in glob.glob(path_txt):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        category_lines[category] = lines

    n_categories = len(all_categories)

    # step 2 model
    n_hidden = 128
    # rnn = RNN(n_letters, n_hidden, n_categories)
    rnn = RNN(n_letters, n_hidden, n_categories)

    rnn.to(device)

    # step 3 loss
    criterion = nn.NLLLoss()

    # step 4 optimize by hand

    # step 5 iteration
    current_loss = 0
    all_losses = []
    start = time.time()
    for iter in range(1, n_iters + 1):
        # sample
        category, line, category_tensor, line_tensor = randomTrainingExample()

        # training
        output, loss = train(category_tensor, line_tensor)

        current_loss += loss

        # Print iter number, loss, name and guess
        if iter % print_every == 0:
            guess, guess_i = categoryFromOutput(output)
            correct = '✓' if guess == category else '✗ (%s)' % category
            print('Iter: {:<7} time: {:>8s} loss: {:.4f} name: {:>10s}  pred: {:>8s} label: {:>8s}'.format(
                iter, timeSince(start), loss, line, guess, correct))

        # Add current loss avg to list of losses
        if iter % plot_every == 0:
            all_losses.append(current_loss / plot_every)
            current_loss = 0
path_model = os.path.join(BASE_DIR, "rnn_state_dict.pkl")
torch.save(rnn.state_dict(), path_model)
plt.plot(all_losses)
plt.show()

predict('Yue Tingsong')
predict('Yue tingsong')
predict('yutingsong')

predict('test your name')

你可能感兴趣的:(深度学习Pyrotch,pytorch,深度学习,python,机器学习,人工智能)