【Matting】MODNet:实时人像抠图模型-onnx C++部署

  在线人像抠图体验:CV案例

相关链接:

【Matting】MODNet:实时人像抠图模型-onnx python部署

【Matting】MODNet:实时人像抠图模型-笔记

【Matting】MODNet:实时人像抠图模型-NCNN C++量化部署

上面的2篇博客,分别分析了MODNet的原理以及python部署方法,本文将使用C++部署MODNet模型,实现图片Matting和摄像头Matting功能。先上效果图:


目录

一、环境

二、模型

三、代码

四、效果

附录


一、环境

windows 10x64 cpu

onnxruntime-win-x64-1.10.0

opencv 4.5.5

visual studio 2019

二、模型

下载官方提供的onnx模型,官方的repo地址:https://github.com/ZHKKKe/MODNet.git,在onnx文件夹下有下载链接,这里就不给出来了。

使用netron查看onnx模型:

【Matting】MODNet:实时人像抠图模型-onnx C++部署_第1张图片

 网络结构:

三、代码

实现了2个功能:图片Matting、摄像头Matting(速度与电脑性能有关,cpu会很慢)

代码目录:

【Matting】MODNet:实时人像抠图模型-onnx C++部署_第2张图片

 MODNet.h内容:

#pragma once
#include 
#include 
#include 
#include 
#include 
#include 


class MODNet
{
protected:
	Ort::Env env_;
	Ort::SessionOptions session_options_;
	Ort::Session session_{ nullptr };
	Ort::RunOptions run_options_{ nullptr };

	std::vector input_tensors_;


	std::vector input_node_names_;
	std::vector input_node_dims_;
	size_t input_tensor_size_{ 1 };

	std::vector out_node_names_;
	size_t out_tensor_size_{ 1 };

	int image_h;
	int image_w;

	cv::Mat normalize(cv::Mat& image);
	cv::Mat preprocess(cv::Mat image);

public:
	MODNet() = delete;
	MODNet(std::wstring model_path, int num_threads, std::vector input_node_dims);
	cv::Mat predict_image(cv::Mat& src);
	void predict_image(const std::string& src_path, const std::string& dst_path);
	void predict_camera();

};

 MODNet.cpp内容:

#include "MODNet.h"


MODNet::MODNet(std::wstring model_path, int num_threads = 1, std::vector input_node_dims = { 1, 3, 192, 192 }) {
	input_node_dims_ = input_node_dims;
	for (int64_t i : input_node_dims_) {
		input_tensor_size_ *= i;
		out_tensor_size_ *= i;
	}

	//std::cout << input_tensor_size_ << std::endl;
	session_options_.SetIntraOpNumThreads(num_threads);
	session_options_.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);

	try {
		session_ = Ort::Session(env_, model_path.c_str(), session_options_);
	}
	catch (...) {

	}

	Ort::AllocatorWithDefaultOptions allocator;
	//获取输入name
	const char* input_name = session_.GetInputName(0, allocator);
	input_node_names_ = { input_name };
	//std::cout << "input name:" << input_name << std::endl;
	const char* output_name = session_.GetOutputName(0, allocator);
	out_node_names_ = { output_name };
	//std::cout << "output name:" << output_name << std::endl;
}


cv::Mat MODNet::normalize(cv::Mat& image) {
	std::vector channels, normalized_image;
	cv::split(image, channels);

	cv::Mat r, g, b;
	b = channels.at(0);
	g = channels.at(1);
	r = channels.at(2);
	b = (b / 255. - 0.5) / 0.5;
	g = (g / 255. - 0.5) / 0.5;
	r = (r / 255. - 0.5) / 0.5;

	normalized_image.push_back(r);
	normalized_image.push_back(g);
	normalized_image.push_back(b);

	cv::Mat out = cv::Mat(image.rows, image.cols, CV_32F);
	cv::merge(normalized_image, out);
	return out;
}

/*
* preprocess: resize -> normalize
*/
cv::Mat MODNet::preprocess(cv::Mat image) {
	image_h = image.rows;
	image_w = image.cols;
	cv::Mat dst, dst_float, normalized_image;
	cv::resize(image, dst, cv::Size(int(input_node_dims_[3]), int(input_node_dims_[2])), 0, 0);
	dst.convertTo(dst_float, CV_32F);
	normalized_image = normalize(dst_float);

	return normalized_image;
}

/*
* postprocess: preprocessed image -> infer -> postprocess
*/
cv::Mat MODNet::predict_image(cv::Mat& src) {
	cv::Mat preprocessed_image = preprocess(src);
	cv::Mat blob = cv::dnn::blobFromImage(preprocessed_image, 1, cv::Size(int(input_node_dims_[3]), int(input_node_dims_[2])), cv::Scalar(0, 0, 0), false, true);
	//std::cout << "load image success." << std::endl;
	// create input tensor
	auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);

	input_tensors_.emplace_back(Ort::Value::CreateTensor(memory_info, blob.ptr(), blob.total(), input_node_dims_.data(), input_node_dims_.size()));

	std::vector output_tensors_ = session_.Run(
		Ort::RunOptions{ nullptr },
		input_node_names_.data(),
		input_tensors_.data(),
		input_node_names_.size(),
		out_node_names_.data(),
		out_node_names_.size()
	);
	float* floatarr = output_tensors_[0].GetTensorMutableData();

	// decoder 
	cv::Mat mask = cv::Mat::zeros(static_cast(input_node_dims_[2]), static_cast(input_node_dims_[3]), CV_8UC1);

	for (int i{ 0 }; i < static_cast(input_node_dims_[2]); i++) {
		for (int j{ 0 }; j < static_cast(input_node_dims_[3]); ++j) {
			mask.at(i, j) = static_cast(floatarr[i * static_cast(input_node_dims_[3]) + j] > 0.5);
		}
	}
	cv::resize(mask, mask, cv::Size(image_w, image_h), 0, 0);
	input_tensors_.clear();
	return mask;
}

void MODNet::predict_image(const std::string& src_path, const std::string& dst_path) {
	cv::Mat image = cv::imread(src_path);
	cv::Mat mask = predict_image(image);
	cv::Mat predict_image;
	cv::bitwise_and(image, image, predict_image, mask = mask);
	cv::imwrite(dst_path, predict_image);
	//std::cout << "predict image over" << std::endl;
	
}


void MODNet::predict_camera() {
	cv::Mat frame;
	cv::VideoCapture cap;
	int deviceID{ 0 };
	int apiID{ cv::CAP_ANY };
	cap.open(deviceID, apiID);
	if (!cap.isOpened()) {
		std::cout << "Error, cannot open camera!" << std::endl;
		return;
	}
	//--- GRAB AND WRITE LOOP
	std::cout << "Start grabbing" << std::endl << "Press any key to terminate" << std::endl;
	int count{ 0 };
	clock_t start{ clock() }, end;
	double fps{ 0 };
	for (;;)
	{
		// wait for a new frame from camera and store it into 'frame'
		cap.read(frame);
		// check if we succeeded
		if (frame.empty()) {
			std::cout << "ERROR! blank frame grabbed" << std::endl;
			break;
		}
		cv::Mat mask = predict_image(frame);
		cv::Mat segFrame;
		cv::bitwise_and(frame, frame, segFrame, mask = mask);
		// fps
		end = clock();
		++count;
		fps = count / (float(end - start) / CLOCKS_PER_SEC);
		if (count >= 100) {
			count = 0;
			start = clock();
		}
		std::cout << fps << "  " << count << "   " << end - start << std::endl;
		//设置绘制文本的相关参数
		std::string text{ std::to_string(fps) };
		int font_face = cv::FONT_HERSHEY_COMPLEX;
		double font_scale = 1;
		int thickness = 2;
		int baseline;
		cv::Size text_size = cv::getTextSize(text, font_face, font_scale, thickness, &baseline);

		//将文本框居中绘制
		cv::Point origin;
		origin.x = 20;
		origin.y = 20;
		cv::putText(segFrame, text, origin, font_face, font_scale, cv::Scalar(0, 255, 255), thickness, 8, 0);

		// show live and wait for a key with timeout long enough to show images
		cv::imshow("Live", segFrame);
		if (cv::waitKey(5) >= 0)
			break;

	}
	cap.release();
	cv::destroyWindow("Live");

	return;
}


main.cpp内容:

#include 
#include 
#include 
#include "MODNet.h"
#include 


int main()
{
    std::wstring model_path(L"modnet.onnx");
    std::cout << "infer...." << std::endl;
    MODNet modnet(model_path, 1, { 1, 3, 512, 512 });
    modnet.predict_image("C:\\Users\\xxx\\Pictures\\test1.jpeg", "C:\\Users\\xxx\\Pictures\\matting.png");
    modnet.predict_camera(); //使用摄像头
    return 0;
}

四、效果

附录

本文代码及权重链接:modnet onnx C++部署,实现了图像matting,摄像头matting功能

你可能感兴趣的:(深度学习,Matting,图像处理,计算机视觉,Matting,MODNet,深度学习,人工智能)