- 大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码
Echo_Wish
大数据高阶实战秘籍大数据
大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码今天我们聊一个听起来很“软”的话题——企业文化,但从一个不太“软”的角度来看:大数据如何参与企业文化的建设与提升。企业文化往往被看作无形资产,是团队凝聚力、创新力的源泉。但传统“喊口号”式的文化建设常常效果有限。大数据技术的兴起,给我们提供了洞察员工心理、量化文化影响的新思路,让文化建设从“感性”走向“理性”,从“盲目”变得“精准”。一、
- Docker快速部署Hive服务
长路 ㅤ
运维Docker配置Hive环境大数据远程调试
文章目录前言Docker快速配置hive环境资料获取前言博主介绍:✌目前全网粉丝4W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)CSDN搜索:长路视频平台:b站-Coder长路Docker快速配置hive环境Ap
- 从UI设计到数字孪生实战:构建智慧教育的个性化学习平台
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:数字孪生重构智慧教育的技术范式在教育数字化转型加速推进的背景下,传统在线教育正面临"个性化不足、学习体验单一、效果评估滞后"的瓶颈。教育部数据显示,采用数字孪生技术的智慧教育平台,学生学习效率平均提升35
- 每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户_用户每日登陆脉脉会访问app不同的模块,现有两个表 表1记录了每日脉脉活跃用户的ui(1)
文章目录每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户每日语录第25题:1.需求列表1.初级题:每日活跃用户思路分析(1)创建表(2)思路答案获取加技术群讨论附表文末SQL小技巧后记每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户大家好,我是Maynor。相信大家和我一样,都有一个大厂梦,作为一名资深大数据选手,深知SQL重要性,接下来我准备用100天时间,基于大
- Spring Boot 项目启动时按需初始化加载数据
我叫晨曦啊
springbootspringbootjava后端
1、新建类,类上添加注解@Component,该类用于在项目启动时处理数据加载任务;2、该类实现ApplicationRunner接口,并重写run方法;3、在重写的run方法里处理数据加载任务;注意:有定时加载数据需求的话,添加定时任务即可;一次性加载大数据量时可能内存溢出;同一个项目中,可以定义多个ApplicationRunner的实现类;存在多个ApplicationRunner的实现类时
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Apache SeaTunnel × Hive 深度集成指南:原理、配置与实践
数据库
在大数据处理的复杂生态中,数据的高效流转与整合是实现数据价值的关键。ApacheSeaTunnel作为一款高性能、分布式、易扩展的数据集成框架,能够快速实现海量数据的实时采集、转换和加载;而ApacheHive作为经典的数据仓库工具,为结构化数据的存储、查询和分析提供了坚实的基础。将ApacheSeaTunnel与Hive进行集成,能够充分发挥两者的优势,构建起高效的数据处理链路,满足企业多样化的
- 大数据平台之ranger与ldap集成,同步用户和组
无级程序员
大数据大数据hadoop
ranger可以通过ranger-usersync与linux系统同步用户,但是,还有个问题,就是我们的hiveserver一般是集群,可以是多台服务器,那么我们空间同步哪一台呢,而且如果用户多了,如何管理用户登录密码呢,所以,还是要用ldap比较合理。首先是安装openldap:yum-yinstallopenldapcompat-openldapopenldap-clientsopenldap
- vue-scrollto实现页面组件锚点定位
长路 ㅤ
前端vue.js前端javascript
文章目录前言背景操作指南安装及配置步骤vue组件中使用参考文章前言博主介绍:✌目前全网粉丝3W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)视频平台:b站-Coder长路背景vue中在hash模式下,页面的动态渲染
- SQL Server 临时表、表变量与WITH语句的用法与区别
Favor_Yang
SQL调优及高级SQL语法编写数据库sqlsqlserver
引言在SQLServer数据处理中,临时表、表变量和WITH语句(CTE)是关键的中间结果集管理工具。临时表适合大数据量操作,表变量优化小数据量场景,而CTE则简化复杂查询逻辑。三者选择需综合考量数据量级、事务需求及代码可读性。本文将深入解析其工作机制,通过实测对比指导场景化选型。1.临时表(TemporaryTables)定义与创建通过#(本地)或##(全局)前缀创建物理表:--本地临时表CRE
- 从0到1:Vue.js与D3.js搭建AI大数据动态看板
一、引言在当今AI和大数据盛行的时代,数据如同企业的“石油”,蕴含着巨大的价值。随着数据量呈指数级增长,如何从海量数据中快速提取有价值的信息,并以直观、易懂的方式呈现出来,成为了数据分析领域的关键挑战。数据看板作为一种强大的数据可视化工具,能够将复杂的数据转化为直观的图表、图形和指标,帮助用户快速理解数据背后的含义,做出更明智的决策。无论是企业的管理层、业务分析师还是数据科学家,都可以通过数据看板
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- 【前端开发】Uniapp分页器:新增输入框跳转功能
基于UniApp官方扩展组件库uni-ui中的uni-pagination分页器组件,针对大数据量场景进行优化主要优化以下内容:新增输入框跳转功能:在原有分页器基础上,新增了一个输入框区域,允许用户直接输入目标页码进行跳转双向页码绑定优化:实现了输入框与当前页码的双向绑定机制。当用户通过其他方式(如点击上一页、下一页、页码按钮)切换页面时,输入框会自动更新显示当前页码。同时,当用户在输入框中输入页
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- 如何在YashanDB中实现多级缓存策略
数据库
随着大数据时代的到来,数据存储和访问的效率要求越来越高。数据库技术在面对海量数据、高并发访问时,性能瓶颈逐渐凸显,尤其是响应时间和系统吞吐量成为开发者和DBA关注的重点。为了解决这些问题,缓存策略被引入作为一种有效的解决方案。然而,不同类型的缓存(如内存缓存、磁盘缓存等)之间需要协调工作,以达到最佳性能。在此背景下,YashanDB作为一个云原生数据库,支持多级缓存策略,为数据访问提供了灵活的加速
- 蛋白质结构预测/功能注释/交互识别/按需设计,中国海洋大学张树刚团队直击蛋白质智能计算核心任务
hyperai
蛋白质作为生命活动的主要承担者,在人体生理功能中扮演关键角色。然而传统研究面临结构解析成本高昂、功能注释严重滞后、新型蛋白质设计效率低下等挑战。近年来,生命科学对蛋白质复杂特性解析的需求日益迫切,大数据、深度学习、多模态计算等技术的突破性发展,为构建蛋白质智能计算体系提供了全新的发展契机。蛋白质智能计算体系的构建,使得蛋白质在大规模功能注释、交互预测及三维结构建模等领域取得显著成果,为药物发现与生
- 管理大数据存储的十大技巧
weixin_34238633
大数据数据库运维
在1990年,每一台应用服务器都倾向拥有直连式系统(DAS)。SAN的构建则是为了更大的规模和更高的效率提供共享的池存储。Hadoop已经逆转了这一趋势回归DAS。每一个Hadoop集群都拥有自身的——虽然是横向扩展型——直连式存储,这有助于Hadoop管理数据本地化,但也放弃了共享存储的规模和效率。如果你拥有多个实例或Hadoop发行版,那么你就将得到多个横向扩展的存储集群。而我们所遇到的最大挑
- 【计算机毕业设计】基于Springboot的办公用品管理系统+LW
枫叶学长(专业接毕设)
Java毕业设计实战案例课程设计springboot后端
博主介绍:✌全网粉丝3W+,csdn特邀作者、CSDN新星计划导师、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- 深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
Uranus^
JavaSpringBootKafka消息队列分布式系统
深入解析SpringBoot与Kafka集成:构建高性能消息驱动应用引言在现代分布式系统中,消息队列是实现异步通信和解耦的关键组件之一。ApacheKafka作为一种高性能、分布式的消息队列系统,被广泛应用于大数据处理、实时流处理以及事件驱动的架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高性能的消息驱动应用。Kafka简介ApacheKafka是一个分布式流处理平台,
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- (阳:算法霸权 / 阴:数据确权)→当GDPR类法规覆盖53%经济体量时,催生出隐私计算新范式
百态老人
人工智能机器学习深度学习算法
当GDPR类法规覆盖53%经济体量时,隐私计算新范式的兴起可归因于以下多维度因素的相互作用:一、算法霸权与数据确权的矛盾激化算法霸权的危害大型科技公司通过算法歧视、大数据杀熟等手段形成垄断优势,利用数据优势操控用户行为,导致消费者权益受损。这种"算法黑箱"不仅加剧市场不公平,还阻碍数据要素的自由流动。例如,算法框架的底层逻辑掌握在少数企业手中,产生"数据黑箱"问题。数据确权的立法需求数据权属不明确
- 解析大数据领域结构化数据的管理模式
大数据洞察
大数据ai
解码结构化数据:大数据时代的高效管理模式与实践指南关键词结构化数据、大数据管理、数据建模、分布式数据库、数据仓库、数据治理、性能优化摘要在大数据的洪流中,结构化数据犹如隐藏在波涛之下的磐石,虽然不如非结构化数据那般引人注目,却是企业决策的基石。本文深入剖析了大数据环境下结构化数据的管理模式,从传统关系型数据库到现代分布式系统,从数据建模到存储架构,全面解读了结构化数据管理的核心技术与实践方法。通过
- ClickHouse【理论篇】01:什么是ClickHouse
ClickHouse是一款开源的列式数据库管理系统(Column-OrientedDBMS),专为高性能实时数据分析(OLAP,OnlineAnalyticalProcessing)场景设计。它由俄罗斯搜索引擎公司Yandex开发(2016年开源),目前由独立基金会ClickHouse,Inc.维护,广泛应用于大数据分析、日志处理、用户行为洞察等领域。一、核心定位:OLAP场景的“性能标杆”传统关
- 【大数据入门核心技术-DolphinScheduler】(二)DolphinScheduler安装部署-集群模式
forest_long
大数据技术入门到21天通关大数据sparkhivehadoop交互flinkmapreduce
目录一、部署模式1、单机模式2、伪集群模式3、集群模式二、部署安装1、下载2、创建mysql元数据库3、配置一键部署脚本4、初始化数据库5、一键部署DolphinScheduler6、访问DolphinSchedulerUI三、启停命令一、部署模式DolphinScheduler支持多种部署模式,包括单机模式(Standalone)、伪集群模式(PseudoCluster)、集群模式(Cluste
- 利用已有的 PostgreSQL 和 ZooKeeper 服务,启动dolphinscheduler-standalone-server3.1.9 镜像
云游
大数据平台zookeeperdockerpostgresql工作流任务调度
ApacheDolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。ApacheDolphinScheduler旨在解决复杂的大数据任务依赖关系,并为应用程序提供数据和各种OPS编排中的关系。解决数据研发ETL依赖错综复杂,无法监控任务健康状态的问题。DolphinSchedule
- Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
资讯分享周
大数据gpt
如何通过AI工具实现法律服务的提质增效,是每一位法律人都积极关注和学习的课题。但从AI技术火爆一下,法律人一直缺乏系统、实用的学习资料,来掌握在法律场景下AI的使用技巧。今年5月,iCourt携手贵阳律协大数据与人工智能专业委员会,联合举办了《人工智能助力律师行业高质量发展巡回讲座》,超过100家律所的律师参与活动。讲座上,iCourtAIGC研究员、AlphaGPT产品研发负责人兰洋,为贵州律协
- 电商API性能优化:策略体系与实施要点
Joe13265449558
性能优化电商返回值淘宝API接口京东
电商API性能优化策略介绍在电商领域,API(应用程序编程接口)作为连接电商平台与外部系统、服务或应用的关键桥梁,其性能直接关系到用户体验、业务效率以及系统的整体稳定性。随着电商业务的快速发展,API接口面临着高并发、大数据量处理等挑战,因此,对电商API进行性能优化显得尤为重要。本文将从多个维度探讨电商API性能优化的策略。一、数据库优化策略数据库是电商API接口的核心组件之一,其性能直接影响A
- ECharts 智慧医疗大屏制作实例详解
在大数据时代,数据可视化已成为信息传递和决策支持的重要手段。ECharts作为一款功能强大、易于上手的开源可视化库,凭借其丰富的图表类型、灵活的配置项和良好的跨平台兼容性,广泛应用于企业级数据大屏、BI报表、实时监控等场景。本教程以“智慧医疗大屏”为例,完整演示了从页面搭建、图表配置到动态交互与响应式适配的全过程。通过循序渐进的讲解,读者将掌握如何使用ECharts构建专业、美观、可交互的数据可视
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc