视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量

对极几何 2D2D

对极几何(Epipolar Geometry)是Structure from Motion问题中,在两个相机位置产生的两幅图像的之间存在的一种特殊几何关系,是sfm问题中2D-2D求解两帧间相机姿态的基本模型。

相机位姿估计问题——》

1.根据配对点的像素位置求出本质矩阵E或者基础矩阵F

2.根据E或者F求出R,t

E,F只相差了相机内参,而相机内参在SLAM中通常已知。

对极约束

摘自 高翔《视觉SLAM十四讲》第七章

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第1张图片

 

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第2张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第3张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第4张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第5张图片

本质矩阵

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第6张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第7张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第8张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第9张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第10张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第11张图片

单应矩阵

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第12张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第13张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第14张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第15张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第16张图片

实践

同样使用高翔《视觉SLAM十四讲》ch7中的例程

pose_estimation_2d2d.cpp

#include 
#include 
#include 
#include 
#include 
// #include "extra.h" // use this if in OpenCV2 
using namespace std;
using namespace cv;

/****************************************************
 * 本程序演示了如何使用2D-2D的特征匹配估计相机运动
 * **************************************************/

void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector& keypoints_1,
    std::vector& keypoints_2,
    std::vector< DMatch >& matches );

void pose_estimation_2d2d (
    std::vector keypoints_1,
    std::vector keypoints_2,
    std::vector< DMatch > matches,
    Mat& R, Mat& t );

// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );

int main ( int argc, char** argv )
{
    if ( argc != 3 )
    {
        cout<<"usage: pose_estimation_2d2d img1 img2"< keypoints_1, keypoints_2;
    vector matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"< ( 3,3 ) <<
                0,                      -t.at ( 2,0 ),     t.at ( 1,0 ),
                t.at ( 2,0 ),      0,                      -t.at ( 0,0 ),
                -t.at ( 1,0 ),     t.at ( 0,0 ),      0 );

    cout<<"t^R="< ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    for ( DMatch m: matches )
    {
        Point2d pt1 = pixel2cam ( keypoints_1[ m.queryIdx ].pt, K );
        Mat y1 = ( Mat_ ( 3,1 ) << pt1.x, pt1.y, 1 );
        Point2d pt2 = pixel2cam ( keypoints_2[ m.trainIdx ].pt, K );
        Mat y2 = ( Mat_ ( 3,1 ) << pt2.x, pt2.y, 1 );
        Mat d = y2.t() * t_x * R * y1;
        cout << "epipolar constraint = " << d << endl;
    }
    return 0;
}

void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                            std::vector& keypoints_1,
                            std::vector& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3 
    Ptr detector = ORB::create();
    Ptr descriptor = ORB::create();
    // use this if you are in OpenCV2 
    // Ptr detector = FeatureDetector::create ( "ORB" );
    // Ptr descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector match;
    //BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}


Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2d
           (
               ( p.x - K.at ( 0,2 ) ) / K.at ( 0,0 ),
               ( p.y - K.at ( 1,2 ) ) / K.at ( 1,1 )
           );
}


void pose_estimation_2d2d ( std::vector keypoints_1,
                            std::vector keypoints_2,
                            std::vector< DMatch > matches,
                            Mat& R, Mat& t )
{
    // 相机内参,TUM Freiburg2
    Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    //-- 把匹配点转换为vector的形式
    vector points1;
    vector points2;

    for ( int i = 0; i < ( int ) matches.size(); i++ )
    {
        points1.push_back ( keypoints_1[matches[i].queryIdx].pt );
        points2.push_back ( keypoints_2[matches[i].trainIdx].pt );
    }

    //-- 计算基础矩阵
    Mat fundamental_matrix;
    fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );
    cout<<"fundamental_matrix is "<

./build/pose_estimation_2d2d 1.png 2.png

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第17张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第18张图片

三角测量

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第19张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第20张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第21张图片

实践

利用对极几何求解的相机位姿。通过三角化求出特征点的空间位置。调用OpenCV提供的triangulation函数进行三角化

triangulation.cpp

#include 
#include 
#include 
#include 
#include 
// #include "extra.h" // used in opencv2 
using namespace std;
using namespace cv;

void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector& keypoints_1,
    std::vector& keypoints_2,
    std::vector< DMatch >& matches );

void pose_estimation_2d2d (
    const std::vector& keypoints_1,
    const std::vector& keypoints_2,
    const std::vector< DMatch >& matches,
    Mat& R, Mat& t );

void triangulation (
    const vector& keypoint_1,
    const vector& keypoint_2,
    const std::vector< DMatch >& matches,
    const Mat& R, const Mat& t,
    vector& points
);

// 像素坐标转相机归一化坐标
Point2f pixel2cam( const Point2d& p, const Mat& K );

int main ( int argc, char** argv )
{
    if ( argc != 3 )
    {
        cout<<"usage: triangulation img1 img2"< keypoints_1, keypoints_2;
    vector matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"< points;
    triangulation( keypoints_1, keypoints_2, matches, R, t, points );
    
    //-- 验证三角化点与特征点的重投影关系
    Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    for ( int i=0; i& keypoints_1,
                            std::vector& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3 
    Ptr detector = ORB::create();
    Ptr descriptor = ORB::create();
    // use this if you are in OpenCV2 
    // Ptr detector = FeatureDetector::create ( "ORB" );
    // Ptr descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr matcher  = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector match;
   // BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}

void pose_estimation_2d2d (
    const std::vector& keypoints_1,
    const std::vector& keypoints_2,
    const std::vector< DMatch >& matches,
    Mat& R, Mat& t )
{
    // 相机内参,TUM Freiburg2
    Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    //-- 把匹配点转换为vector的形式
    vector points1;
    vector points2;

    for ( int i = 0; i < ( int ) matches.size(); i++ )
    {
        points1.push_back ( keypoints_1[matches[i].queryIdx].pt );
        points2.push_back ( keypoints_2[matches[i].trainIdx].pt );
    }

    //-- 计算基础矩阵
    Mat fundamental_matrix;
    fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );
    cout<<"fundamental_matrix is "<& keypoint_1, 
    const vector< KeyPoint >& keypoint_2, 
    const std::vector< DMatch >& matches,
    const Mat& R, const Mat& t, 
    vector< Point3d >& points )
{
    Mat T1 = (Mat_ (3,4) <<
        1,0,0,0,
        0,1,0,0,
        0,0,1,0);
    Mat T2 = (Mat_ (3,4) <<
        R.at(0,0), R.at(0,1), R.at(0,2), t.at(0,0),
        R.at(1,0), R.at(1,1), R.at(1,2), t.at(1,0),
        R.at(2,0), R.at(2,1), R.at(2,2), t.at(2,0)
    );
    
    Mat K = ( Mat_ ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    vector pts_1, pts_2;
    for ( DMatch m:matches )
    {
        // 将像素坐标转换至相机坐标
        pts_1.push_back ( pixel2cam( keypoint_1[m.queryIdx].pt, K) );
        pts_2.push_back ( pixel2cam( keypoint_2[m.trainIdx].pt, K) );
    }
    
    Mat pts_4d;
    cv::triangulatePoints( T1, T2, pts_1, pts_2, pts_4d );
    
    // 转换成非齐次坐标
    for ( int i=0; i(3,0); // 归一化
        Point3d p (
            x.at(0,0), 
            x.at(1,0), 
            x.at(2,0) 
        );
        points.push_back( p );
    }
}

Point2f pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2f
    (
        ( p.x - K.at(0,2) ) / K.at(0,0), 
        ( p.y - K.at(1,2) ) / K.at(1,1) 
    );
}

 ./build/triangulation 1.png 2.png

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第22张图片

视觉里程计2(SLAM十四讲ch7)-对极几何,三角测量_第23张图片

你可能感兴趣的:(SLAM,SLAM,对极几何)