基于贝叶斯分类器(朴素贝叶斯)的手写数字识别

1.认识mnist数据集

基于贝叶斯分类器(朴素贝叶斯)的手写数字识别_第1张图片

 基于贝叶斯分类器(朴素贝叶斯)的手写数字识别_第2张图片

2.朴素贝叶斯分类

原理就不再介绍:

基于贝叶斯分类器(朴素贝叶斯)的手写数字识别_第3张图片

 3.代码如下:

import numpy as np
from struct import unpack
import matplotlib.pyplot as plt
from PIL import Image
from collections import Counter
import math
from sklearn.decomposition import PCA



# 配置文件
config = {
    # 训练集文件
    'train_images_idx3_ubyte_file_path': 'data/train-images.idx3-ubyte',
    # 训练集标签文件
    'train_labels_idx1_ubyte_file_path': 'data/train-labels.idx1-ubyte',

    # 测试集文件
    'test_images_idx3_ubyte_file_path': 'data/t10k-images.idx3-ubyte',
    # 测试集标签文件
    'test_labels_idx1_ubyte_file_path': 'data/t10k-labels.idx1-ubyte',

    # 特征提取阙值
    'binarization_limit_value': 0.14,

    # 特征提取后的边长
    'side_length': 14
}



def decode_idx3_ubyte(path):
    '''
    加载文件数据
    '''
    '''
    也可不解压,直接打开.gz文件。path是.gz文件的路径
    import gzip
    with gzip.open(path, 'rb') as f:
    '''
    print('loading %s' % path)  #提醒的标志性语句
    with open(path, 'rb') as f:
        # 前16位为附加数据,每4位为一个整数,分别为幻数,图片数量,每张图片像素行数,列数。
        magic, num, rows, cols = unpack('>4I', f.read(16))
        print('magic:%d 数量:%d 行数:%d 列数:%d' % (magic, num, rows, cols))
        mnistImage = np.fromfile(f, dtype=np.uint8).reshape(num, rows, cols)
    print('完成操作')
    #print('下面是处理的具体的图像')
    #print(mnistImage)
    return mnistImage



def decode_idx1_ubyte(path):
    '''
    解析idx1-ubyte文件,即解析MNIST标签文件
    '''
    print('loading %s' % path)
    with open(path, 'rb') as f:
        # 前8位为附加数据,每4位为一个整数,分别为幻数,标签数量。
        magic, num = unpack('>2I', f.read(8))
        print('magic:%d num:%d' % (magic, num))
        mnistLabel = np.fromfile(f, dtype=np.uint8)
    print('done')
    #print('下面是训练集的标签')
    #print(mnistLabel)
    return mnistLabel


def normalizeImage(image):
    '''
    将图像的像素值归一化为0.0 ~ 1.0
    '''
    res = image.astype(np.float32) / 255.0
    return res


def load_train_images(path=config['train_images_idx3_ubyte_file_path']):
    return normalizeImage(decode_idx3_ubyte(path))


def load_train_labels(path=config['train_labels_idx1_ubyte_file_path']):
    return decode_idx1_ubyte(path)


def load_test_images(path=config['test_images_idx3_ubyte_file_path']):
    return normalizeImage(decode_idx3_ubyte(path))


def load_test_labels(path=config['test_labels_idx1_ubyte_file_path']):
    return decode_idx1_ubyte(path)




def oneImagesFeatureExtraction(image):
    '''
    对单张图片进行特征提取 均值特征提取
    '''
    res = np.empty((config['side_length'], config['side_length']))
    num = 28//config['side_length']     # //先做除法向下取整
    for i in range(0, config['side_length']):
        for j in range(0, config['side_length']):
            tempMean = image[num*i:num*(i+1), num*j:num*(j+1)].mean()  #采用均值进行降维  步长为2
            if tempMean > config['binarization_limit_value']:          #对图像进行二维化处理
                res[i, j] = 1
            else:
                res[i, j] = 0
    return res



def oneImagesFeatureExtraction1(image):
    '''
    对单张图片进行特征提取  最大值特征提取
    '''
    res = np.empty((config['side_length'], config['side_length']))
    num = 28//config['side_length']     # //先做除法向下取整
    for i in range(0, config['side_length']):
        for j in range(0, config['side_length']):
            tempMean = image[num*i:num*(i+1), num*j:num*(j+1)].max()#采用均值进行降维  步长为2
            if tempMean > config['binarization_limit_value']:          #对图像进行二维化处理
                res[i, j] = 1
            else:
                res[i, j] = 0
    return res


def get_main_cahrticter(image):
    ''''对单张图片进行PCA降维处理进行特征提取'''
    pca=PCA(n_components=14)
    pca.fit(image)
    answer=pca.transform(image)  #降维后的数据
    #print(answer)
    res = np.empty((config['side_length'], config['side_length']))
    num=28//config['side_length']
    for i in range(0,config['side_length']):
        for j in range(0, config['side_length']):
            tempMean=answer[num*i:num*(i+1),j].mean()
            if tempMean > config['binarization_limit_value']:          #对图像进行二维化处理
                res[i, j] = 1
            else:
                res[i, j] = 0
    return res



def featureExtraction(images):
    '''将所有的图片信息转化为一个矩阵'''
    res = np.empty((images.shape[0], config['side_length'],config['side_length']), dtype=np.float32)  # '''将所有的图片信息转化为一个矩阵'''
    """empty函数的用法:numpy.empty(shape, dtype=float, order=‘C’)  shape表示空间中的维数,dty表示返回的类型"""
    for i in range(images.shape[0]):
        res[i] = oneImagesFeatureExtraction(images[i])  #单张图片的降维处理
    return res



def bayesModelTrain(train_x, train_y):
    '''
    贝叶斯分类器模型训练
    '''
    # 计算先验概率
    totalNum = train_x.shape[0]  #计算训练数据的大小
    #print(totalNum)
    classNumDic = Counter(train_y)  #计算返回每一类出现的次数
    #print(classNumDic)
    prioriP = np.array([classNumDic[i]/totalNum for i in range(10)])  #计算每一类的先验概率
    #print(prioriP)
    # 计算类条件概率
    oldShape = train_x.shape #返回的内容是:(60000, 14, 14)
    #print(oldShape)
    train_x.resize((oldShape[0], oldShape[1]*oldShape[2]))     #将三维图像转换为二维
    #print(train_x.shape[1])
    posteriorNum = np.empty((10, train_x.shape[1])) #返回一个二维大小的数组,里面存储的是
    #print(posteriorNum)
    posteriorP = np.empty((10, train_x.shape[1]))  #返回一个二维大小的数组
    #print(posteriorP)
    for i in range(10):
        posteriorNum[i] = train_x[np.where(train_y == i)].sum(axis=0)  #axis=1表示按行相加 , axis=0表示按列相加
        # 拉普拉斯平滑
        posteriorP[i] = (posteriorNum[i] + 1) / (classNumDic[i] + 2)
    train_x.resize(oldShape)
    return prioriP, posteriorP



def bayesClassifier(test_x, prioriP, posteriorP):
    '''
    使用贝叶斯分类器进行分类(极大似然估计)
    '''
    oldShape = test_x.shape
    test_x.resize(oldShape[0]*oldShape[1])
    classP = np.empty(10)
    for j in range(10):
        temp = sum([math.log(1-posteriorP[j][x]) if test_x[x] == 0 else math.log(posteriorP[j][x]) for x in range(test_x.shape[0])])
        # 很奇怪,在降维成7*7的时候,注释掉下面这一句正确率反而更高
        classP[j] = np.array(math.log(prioriP[j]) + temp)
        classP[j] = np.array(temp)
    test_x.resize(oldShape)
    return np.argmax(classP)  #返回概率最大点的位置上的数



def modelEvaluation(test_x, test_y, prioriP, posteriorP):
    '''
    对贝叶斯分类器的模型进行评估
    '''
    bayesClassifierRes = np.empty(test_x.shape[0])
    for i in range(test_x.shape[0]):
        bayesClassifierRes[i] = bayesClassifier(test_x[i], prioriP, posteriorP)
        #print('预测值:%d 真实值:%d'%(bayesClassifierRes[i],test_y[i]))
    return bayesClassifierRes, (bayesClassifierRes == test_y).sum() / test_y.shape[0]



if __name__ == '__main__':
    print('加载数据')
    train_images = load_train_images()  #加载训练的图片
    train_labels = load_train_labels()  #加载训练的标签
    test_images = load_test_images()   #加载测试的图片
    test_labels = load_test_labels()    #加载测试的标签
    print('加载完毕')
    print('图片转换')
    train_images_feature = featureExtraction(train_images)
    print('图片转换结束')
    print('模型训练开始')
    prioriP, posteriorP = bayesModelTrain(train_images_feature, train_labels)
    print('模型训练完毕')
    # print(prioriP)
    # print(posteriorP)
    print('模型评价开始')
    test_images_feature = featureExtraction(test_images)
    res, val = modelEvaluation(test_images_feature, test_labels, prioriP, posteriorP)
    print('贝叶斯分类器的准确度为%.2f %%' % (val*100))
    print('模型评价结束')

4.运行结果:

特征提取方式

降维维数

特征阈值

测试集准确率

均值池化

14*14

0.14

83.58%

均值池化

28*28

0.14

84.64%

均值池化

9*9

0.14

80.67%

均值池化

15*15

0.14

63%

均值池化

最大池化

14*14

0.14

83.06%

最大池化

28*28

0.14

84.64%

最大池化

9*9

0.14

78.79%

最大池化

10*10

0.14

79.85%

最大池化

15*15

0.14

63%

你可能感兴趣的:(人工智能,人工智能,python)