utils.py代码
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import matplotlib.pyplot as plt
import torch
def plot_curve(data):
fig = plt.figure()
plt.plot(range(len(data)),data,color = 'blue')
plt.legend(['value'],loc = 'upper right')
plt.xlabel('step')
plt.ylabel('value')
plt.show()
def plot_image(img, label, name):
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.tight_layout()
plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
plt.title("{}:{}".format(name, label[i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
def one_hot(label,depth=10):
out = torch.zeros(label.size(0),depth)
idx = torch.LongTensor(label).view(-1,1)
out.scatter_(dim = 1,index = idx,value = 1)
return out
算法代码
import torch
import torchvision
import torch.nn as nn
from torch.nn import functional as F
from torch import optim
from utils import one_hot, plot_image
from visdom import Visdom
batch_size = 512
viz = Visdom()
viz.line([0.], [0.], win='train_loss', opts=dict(title='train_loss'))
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist.data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,)
)
])),
batch_size=batch_size, shuffle=True) # shuffle加载时随机打散
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist.data', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,)
)
])),
batch_size=batch_size, shuffle=True) # shuffle加载时随机打散
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(x.size(0), 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
# 第三层可不用激活函数
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
global_step = 0
for epoch in range(3):
for batch_idx, (x, y) in enumerate(train_loader):
y = one_hot(y)
out = net(x)
loss = F.mse_loss(y, out)
# 也可以使用cross_entropy_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
viz.line([loss.item()], [global_step], win='train_loss', update='append')
global_step += 1
x, y = next(iter(test_loader))
out = net(x)
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')