参数估计与非参数估计

背景知识:概率密度,直观的理解就是在某一个区间内,事件发生的次数的多少的问题,比如N(0,1)高斯分布,就是取值在0的很小的区间的概率很高,至少比其他等宽的小区间要高。

参数估计要求明确参数服从什么分布,明确模型的具体形式,然后给出参数的估计值。根据从总体中抽取的样本估计总体分布中包含的未知参数。

非参数估计对解释变量的分布状况与模型的具体形式不做具体规定 ,运用核密度函数与窗宽去逐步逼近,找出相应的模型。统计学中常见的一些典型分布形式不总是能够拟合实际中的分布。此外,在许多实际问题中经常遇到多峰分布的情况,这就迫使必须用样本来推断总体分布,常见的总体类条件概率密度估计方法有Parzen窗法和Kn近邻法两种。
非参数估计也有人将其称之为无参密度估计,它是一种对先验知识要求最少,完全依靠训练数据进行估计,而且可以用于任意形状密度估计的方法。

最简单的直方图估计,把所有可能取值的范围分成间隔相等的区间,然后看每个区间内有多少个数据?这样就定义出了直方图,因此直方图就是概率密度估计的最原始的模型。
直方图用的是矩形来表示纵轴,当样本在某个小区间被观测到,纵轴就加上一个小矩形。

非参数估计更适合对原函数关系进行模拟,但不能预测;而参数估计则可以预测。

你可能感兴趣的:(数学,统计学,概率密度估计)