详解Word2vec

详解Word2vec

详解Word2vec_第1张图片

一、Wordvec 介绍篇

1.1 Wordvec 指什么?

  • 介绍:word2vec是一个把词语转化为对应向量的形式。word2vec中建模并不是最终的目的,其目的是获取建模的参数,这个过程称为fake task。
  • 双剑客
    • CBOW vs Skip-gram

1.2 Wordvec 中 CBOW 指什么?

  • CBOW
    • 思想:用周围词预测中心词
    • 输入输出介绍:输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量
    • 详解Word2vec_第2张图片

1.3 Wordvec 中 Skip-gram 指什么?

  • Skip-gram
    • 思想:用中心词预测周围词
    • 输入输出介绍:输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量
    • 详解Word2vec_第3张图片

1.4 CBOW vs Skip-gram 哪一个好?

  • CBOW 可以理解为 一个老师教多个学生;(高等教育)
  • Skip-gram 可以理解为 一个学生被多个老师教;(补习班)
  • 那问题来了?
    • 最后 哪个学生 成绩 会更好?

二、Wordvec 优化篇

2.1 Word2vec 中 霍夫曼树 是什么?

HS用哈夫曼树,把预测one-hot编码改成预测一组01编码,进行层次分类。

  • 输入输出:
    • 输入:权值为(w1,w2,…wn)的n个节点
    • 输出:对应的霍夫曼树
  • 步骤:
    1. 将(w1,w2,…wn)看做是有n棵树的森林,每个树仅有一个节点。
    2. 在森林中选择根节点权值最小的两棵树进行合并,得到一个新的树,这两颗树分布作为新树的左右子树。新树的根节点权重为左右子树的根节点权重之和。
    3. 将之前的根节点权值最小的两棵树从森林删除,并把新树加入森林。
    4. 重复步骤2)和3)直到森林里只有一棵树为止。
  • 举例说明:

下面我们用一个具体的例子来说明霍夫曼树建立的过程,我们有(a,b,c,d,e,f)共6个节点,节点的权值分布是(20,4,8,6,16,3)。

首先是最小的b和f合并,得到的新树根节点权重是7.此时森林里5棵树,根节点权重分别是20,8,6,16,7。此时根节点权重最小的6,7合并,得到新子树,依次类推,最终得到下面的霍夫曼树。

详解Word2vec_第4张图片

2.2 Word2vec 中 为什么要使用 霍夫曼树?

一般得到霍夫曼树后我们会对叶子节点进行霍夫曼编码,由于权重高的叶子节点越靠近根节点,而权重低的叶子节点会远离根节点,这样我们的高权重节点编码值较短,而低权重值编码值较长。这保证的树的带权路径最短,也符合我们的信息论,即我们希望越常用的词拥有更短的编码。如何编码呢?一般对于一个霍夫曼树的节点(根节点除外),可以约定左子树编码为0,右子树编码为1.如上图,则可以得到c的编码是00。

在word2vec中,约定编码方式和上面的例子相反,即约定左子树编码为1,右子树编码为0,同时约定左子树的权重不小于右子树的权重。

2.3 Word2vec 中使用 霍夫曼树 的好处?

  1. 由于是二叉树,之前计算量为V,现在变成了log2V;
  2. 由于使用霍夫曼树是高频的词靠近树根,这样高频词需要更少的时间会被找到,这符合我们的贪心优化思想。

2.4 为什么 Word2vec 中会用到 负采样?

  • 动机:使用霍夫曼树来代替传统的神经网络,可以提高模型训练的效率。但是如果我们的训练样本里的中心词w是一个很生僻的词,那么就得在霍夫曼树中辛苦的向下走很久了;
  • 介绍:一种概率采样的方式,可以根据词频进行随机抽样,倾向于选择词频较大的负样本;
  • 优点:
    • 用来提高训练速度并且改善所得到词向量的质量的一种方法;
    • 不同于原本每个训练样本更新所有的权重,负采样每次让一个训练样本仅仅更新一小部分的权重,这样就会降低梯度下降过程中的计算量。

2.5 Word2vec 中会用到 负采样 是什么样?

因为使用softmax时,分母需要将中心词与语料库总所有词做点乘,代价太大:

详解Word2vec_第5张图片

所以负采样方法将softmax函数换成sigmoid函数。

选取K个负样本,即窗口之外的样本,计算中心词与负样本的点乘,最小化该结果。计算中心词与窗口内单词的点乘,最大化该结果,目标函数为:

2.6 Word2vec 中 负采样 的采样方式?

NS是一种概率采样的方式,可以根据词频进行随机抽样,我们倾向于选择词频比较大的负样本,比如“的”,这种词语其实是对我们的目标单词没有很大贡献的。

Word2vec则在词频基础上取了0.75次幂,减小词频之间差异过大所带来的影响,使得词频比较小的负样本也有机会被采到。

极大化正样本出现的概率,同时极小化负样本出现的概率,以sigmoid来代替softmax,相当于进行二分类,判断这个样本到底是不是正样本。

三、Wordvec 对比篇

3.1 word2vec和NNLM对比有什么区别?(word2vec vs NNLM)

  • NNLM:是神经网络语言模型,使用前 n - 1 个单词预测第 n 个单词;
  • word2vec :使用第 n - 1 个单词预测第 n 个单词的神经网络模型。但是 word2vec 更专注于它的中间产物词向量,所以在计算上做了大量的优化。优化如下:
  1. 对输入的词向量直接按列求和,再按列求平均。这样的话,输入的多个词向量就变成了一个词向量。
  2. 采用分层的 softmax(hierarchical softmax),实质上是一棵哈夫曼树。
  3. 采用负采样,从所有的单词中采样出指定数量的单词,而不需要使用全部的单词

3.2 word2vec和tf-idf 在相似度计算时的区别?

  1. word2vec 是稠密的向量,而 tf-idf 则是稀疏的向量;
  2. word2vec 的向量维度一般远比 tf-idf 的向量维度小得多,故而在计算时更快;
  3. word2vec 的向量可以表达语义信息,但是 tf-idf 的向量不可以;
  4. word2vec 可以通过计算余弦相似度来得出两个向量的相似度,但是 tf-idf 不可以;

四、word2vec 实战篇

4.1 word2vec训练trick,window设置多大?

  • window设置:
    • 比较大,会提取更多的topic信息
    • 设置比较小的话会更加关注于词本身。
  • 默认参数是5,但是在有些任务中window为2效果最好,比如某些英语语料的短文本任务(并非越大越好)

4.1 word2vec训练trick,词向量纬度,大与小有什么影响,还有其他参数?

词向量维度代表了词语的特征,特征越多能够更准确的将词与词区分,就好像一个人特征越多越容易与他人区分开来。但是在实际应用中维度太多训练出来的模型会越大,虽然维度越多能够更好区分,但是词与词之间的关系也就会被淡化,这与我们训练词向量的目的是相反的,我们训练词向量是希望能够通过统计来找出词与词之间的联系,维度太高了会淡化词之间的关系,但是维度太低了又不能将词区分,所以词向量的维度选择依赖于你的实际应用场景,这样才能继续后面的工作。一般说来200-400维是比较常见的。

如果本文对你有帮助,欢迎点赞、订阅以及star我的项目。
你的支持是我创作的最大动力!

你可能感兴趣的:(nlp,机器学习,深度学习,神经网络,人工智能,nlp)