- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- AI赋能电商:从个性化推荐到智能化运营
w(゚Д゚)w吓洗宝宝了
当下编程领域的分析大数据人工智能
引言随着互联网技术的飞速发展,电子商务已经成为人们日常生活的重要组成部分。然而,在激烈的市场竞争中,如何提升销售效率和用户体验成为了电商平台面临的主要挑战。近年来,人工智能(AI)技术的迅猛发展为这一挑战提供了新的解决方案。从个性化推荐到会员分类,从商品定价到供应链管理,AI技术的应用不仅提高了电商平台的运营效率,还极大地提升了用户的购物体验。本文将深入探讨AI技术在电商领域的多种应用场景,分析其
- Neural Architecture Search (NAS) 原理和应用
weixin_58349913
python
NeuralArchitectureSearch(NAS)原理和应用NeuralArchitectureSearch(NAS)是一种自动化设计神经网络架构的技术。它通过搜索空间中的不同架构配置来找到最优或接近最优的神经网络结构,从而减少人工设计网络结构的工作量。NAS的目标是通过自动化的方式获得比手工设计更高效、准确的模型架构,特别适用于对网络架构要求较高的任务。1.NAS的基本原理NAS的核心思
- GPT-4对话模型在客服中的应用与前景:开启智能客服新时代
Echo_Wish
前沿技术人工智能python人工智能gpt
GPT-4对话模型在客服中的应用与前景:开启智能客服新时代随着人工智能技术的迅猛发展,基于深度学习的对话模型在各个领域中得到了广泛应用。其中,GPT-4对话模型在客服系统中的应用尤为引人注目。本文将探讨GPT-4在客服中的应用与未来发展前景,并结合具体代码示例进行说明。一、GPT-4对话模型概述GPT-4(GenerativePre-trainedTransformer4)是OpenAI开发的一种
- 用GANs生成艺术作品的创新探索:人工智能与艺术的奇妙碰撞
Echo_Wish
前沿技术人工智能人工智能ganpython
用GANs生成艺术作品的创新探索:人工智能与艺术的奇妙碰撞随着人工智能技术的飞速发展,生成对抗网络(GenerativeAdversarialNetworks,GANs)在图像生成、视频生成、音频合成等领域展现出了惊人的创造力。特别是在艺术创作方面,GANs以其独特的生成能力,为艺术家和创作者提供了新的灵感和工具。本文将探讨GANs在艺术作品生成中的应用与创新,并通过具体代码示例展示其实现过程。一
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
网罗开发
AI大模型人工智能机器学习
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Copilot 概述
计算机萍萍学姐
copilotcopilot人工智能机器学习
Copilot是什么?它有什么用途?Copilot是由人工智能公司和GitHub合作开发的一个基于人工智能的代码提示工具,它可以利用机器学习技术和大量训练数据生成高质量的代码。Copilot的目标是在保持代码质量和可读性的前提下,提高开发者的编码效率,使得编码工作更为高效和便捷。Copilot的出现是解决编程过程中可能遇到的一些难点和瓶颈问题,特别是在快速迭代的敏捷开发场景中,提高编码效率和减少编
- 让旅游更智能:基于AR的旅游导览应用解析
Echo_Wish
Python笔记Python算法旅游arrestful
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- 模型压缩与优化技术——神经架构搜索(Neural Architecture Search, NAS)
DuHz
轻量化模型机器学习计算机视觉人工智能神经网络深度学习数据挖掘语音识别
模型压缩与优化技术中的神经架构搜索(NeuralArchitectureSearch,NAS)技术1.引言在深度学习领域,神经网络的架构设计对模型的性能至关重要。传统的手动设计网络架构的过程费时费力,且通常依赖于经验和直觉。为了提升效率与效果,神经架构搜索(NeuralArchitectureSearch,NAS)作为一种自动化的方法,能够通过算法寻找和优化最佳的神经网络架构。NAS可以在图像识别
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- 面向 Data+AI 的统一数据目录探索 | Data Infra NO.22 回顾(含资料发布)
数据库
随着生成式人工智能(GenerativeAI)的崛起,从图像生成、自然语言处理到个性化推荐系统,生成式AI技术正迅速改变着各行各业的面貌。而在这场变革背后,数据的管理和治理显得尤为重要。对于企业来说,数据不仅是基础资源,更是构建AI应用和增强业务能力的关键。ApacheGravitino(incubating)与Databend作为数据领域两个知名的开源项目,正通过各自的创新技术和实践,为数据管理
- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- 毕设分享 深度学习街道行人流量计数系统
fawubio_A
毕业设计python毕设
文章目录0前言1项目运行效果2设计概要2原理介绍2.1目标检测概况什么是目标检测?发展阶段2.2行人检测行人检测简介行人检测技术难点行人检测实现效果4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要
- Python语法总结
彧侠
脚本处理Python
Python作为一种解释型的脚本语言,无论从自动化运维、大数据处理还是人工智能都得到了广泛的应用,而且它好理解、易学习、上手快的特点也使它成为了当下最火热的开发语言之一。下面就对Python语言中的各种语法做一个总结,以备后用数据类型一、整数二、浮点数三、字符串四、布尔值五、空值print语句注释什么是变量比如:定义字符串raw字符串与多行字符串Unicode字符串字符串还有一个编码问题。整数和浮
- Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
小深ai硬件分享
人工智能深度学习服务器
深度学习框架:开启智能大门的钥匙在数字化浪潮中,深度学习如明星照亮众多领域。从智能安防的人脸识别,到医疗图像分析、电商商品推荐、智能语音助手等,其身影无处不在,改变着生活与工作方式。在深度学习领域,Keras、TensorFlow和PyTorch是主流框架,能助开发者构建强大智能模型。但这些框架要充分发挥作用,离不开合适的服务器配置,就像魔法师需要魔法棒和魔力,下面我们就来看看这些具体的框架吧:框
- python+ollama本地大模型批量识别PDF,总结摘要以及关键词并输出EXCEL。
月野难浔丶
pythonpdf开发语言
现在市场上有很多PDF文件的识别,转化,等等。有些业务可能需要总结摘要和关键词等等一系列的操作。然而随着AI的兴起,本地大模型的部署,这些成为一种很方便的方法,接下来我将为各位介绍我所使用的方法。本篇文章旨在自动化处理PDF文档,提取并清理文本数据,然后使用一种大型模型生成摘要和关键词。最后,处理结果会被整理并输出到Excel文件中,便于后续分析和查看。人工智能(AI)是一种模拟人类智能的科技,它
- Python 编译Edge-TTS(edge_tts)转MP3工具
浩读语音朗读
edge-ttspythonedge自然语言处理前端
Python编译Edge-TTS利用PIPEdge-tts库来实现Azure神经网络自然语音转MP3,这应该是微软给老百姓们一个共享前沿科技大餐。(edge_tts)找了网上的很多源代,现在利用现有公开的代码混编译一个个人的学习工具。代码仅供学习研究。fromtkinterimport*fromtkinter.filedialogimport*fromtkinter.messageboximpor
- 深度学习|表示学习|卷积神经网络|局部链接是什么?|06
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:局部连接(LocalConnectivity),是卷积神经网络(CNN)中的一个关键特性。什么是局部连接(LocalConnectivity)?局部连接指的是:在卷积操作中,每个神经元(或输出单元)只与输入数据的一个局部区域相关联,而不是与整个输入数据相连。换句话说:全连接网络(FullyConnectedLayer)中,每个神经元会与上一层所有的神经元相连。卷积网络(Convoluti
- 多Agent框架之-CrewAI-人工智能代理团队的未来
WorkAgent
人工智能ailangchain
CrewAI-aroleplayingAIAgentsgit地址:https://github.com/joaomdmoura/crewai#why-crewailangchain地址:CrewAIUnleashed:FutureofAIAgentTeamsAgent具有与另一个Agent联系的能力,以委派工作或提出问题。任务可以使用特定的代理工具覆盖,这些工具应该被使用,同时还可以指定特定的代理
- 机器人学习的范式转变:从专用走向通用基础模型
XianxinMao
机器人
标题:机器人学习的范式转变:从专用走向通用基础模型文章信息摘要:机器人学习正经历从特定任务向通用基础模型的范式转变,这一演进路径与大语言模型相似。通过多机器人协作和跨任务泛化能力的成功,基础模型方向展现出实现通用人工智能的潜力。然而,这一转变面临两大关键挑战:机器人硬件的高昂成本限制了大规模部署和数据采集,以及获取足够规模和多样性的训练数据存在实际困难。突破这些瓶颈需要在制造工艺创新、数据共享生态
- AI写代码工具Claude:惊悚小说创作的意外热潮与全球用户偏好差异
前端
近年来,人工智能在各个领域的应用日新月异,其中AI代码生成器的兴起更是为开发者带来了前所未有的效率提升。Anthropic最近发布的一份Claude使用报告,基于百万级用户数据,揭示了这款强大的AI模型的广泛应用,以及不同语言用户对其偏好差异的惊人发现。报告的核心发现之一,便是中文用户对使用Claude创作惊悚小说的强烈偏好,这一现象引发了广泛关注。这篇文章将深入探讨这一现象背后的原因,并对比分析
- 《人工智能新质生产力:GDP增长的未来引擎,究竟能贡献多少?》
人工智能深度学习
在当今科技飞速发展的时代,人工智能作为新质生产力的代表,正以前所未有的态势冲击着全球经济格局,其对GDP增长的贡献率备受关注。从全球视角来看,诸多研究和专家观点都对人工智能的经济贡献给出了积极预测。普华永道曾在2017年发布报告指出,到2030年,人工智能的发展将带动全球GDP增长14%,相当于15.7万亿美元。莫干山研究院学术委员会主任朱嘉明认为,当前人工智能对全球GDP的平均影响约为0.1%,
- AI写代码工具Claude:惊悚小说创作的意外热潮与全球用户偏好差异
前端
近年来,人工智能在各个领域的应用日新月异,其中AI代码生成器的兴起更是为开发者带来了前所未有的效率提升。Anthropic最近发布的一份Claude使用报告,基于百万级用户数据,揭示了这款强大的AI模型的广泛应用,以及不同语言用户对其偏好差异的惊人发现。报告的核心发现之一,便是中文用户对使用Claude创作惊悚小说的强烈偏好,这一现象引发了广泛关注。这篇文章将深入探讨这一现象背后的原因,并对比分析
- [python][whl]pyltp的whl格式文件所有版本下载地址汇总
FL1623863129
Pythonpython开发语言
pyltp:Python中的中文自然语言处理工具在数字化时代,自然语言处理(NLP)成为了与机器进行交互的关键技术。对于中文,由于其独特的语言结构和复杂性,专门的工具和库显得尤为重要。pyltp正是这样一个为中文NLP任务设计的Python库,它封装了LTP(LanguageTechnologyPlatform)的核心功能,使得开发者能够轻松地在Python环境中进行中文文本的处理和分析。pylt
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 【Python】已完美解决:ERROR: Could not find a version that satisfies the requirement re
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 基于Python的三种主流网络爬虫技术
吃肉肉335
python爬虫开发语言
一、网络爬虫是什么网络爬虫,通常也被称为网络蜘蛛或网络机器人,是一种按照一定方法,获取网络各种信息的自动化脚本程序,也可以将其理解为一个在互联网上自动提取网页信息并进行解析抓取的程序。网络爬虫的功能不仅局限于复制网页内容、下载音视频文件,更包括自动化执行行为链以及模拟用户登录等复杂操作。在当前大数据背景下,无论是人工智能应用还是数据分析工作,均依赖于海量的数据支持。如果仅依赖人工采集这一种方式,不
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一