灰点检测系列1:利用灰点检测估计光源,求白平衡

论文:Revisiting Gray Pixel for Statistical Illumination Estimation
https://arxiv.org/abs/1803.08326
灰点检测系列1:利用灰点检测估计光源,求白平衡_第1张图片
左上原图,右上白平衡后图(未经过gamma)
左下灰点可信度(越黑越可能是灰点),右下,筛选得到的灰点像素
python实现如下:


import os
import numpy as np
import scipy.io as scio
import matplotlib.pyplot as plt

import struct

from PIL import Image
from scipy import ndimage
import cv2


eps = 1e-9

def deriv_gauss(img, sigma):
    Gaussoff = 0.000001
    pw = np.array(range(50)).astype(np.int32)
    ssq = sigma ** 2
    width = np.sum(np.exp(-(pw * pw) / (2 * ssq)) > Gaussoff) - 1

    xx = np.arange(2 * width + 1) - width
    yy = np.arange(2 * width + 1) - width
    x, y = np.meshgrid(xx, yy)

    dg2d = -x * np.exp(-(x * x + y * y) / (2 * ssq)) / (np.pi * ssq)

    dg2d = np.array(dg2d)

    ax = ndimage.convolve(img, dg2d, mode='nearest')
    ay = ndimage.convolve(img, dg2d.T, mode='nearest')
    mag = np.sqrt(ax * ax + ay * ay)

    return mag


def normr(data):
    data1 = data / np.sqrt(np.sum(data * data, 1)).reshape(-1, 1)
    return data1


def normc(data):
    data1 = data / np.sqrt(np.sum(data * data, 0)).reshape(-1, 1)
    return data1


def cal_angle(light, ref):
    light = np.reshape(light, (-1, 3))
    ref = np.reshape(ref, (-1, 3))

    cos_angle = np.sum(light * ref, axis=1) / (
            np.sqrt(np.sum(np.power(light, 2), 1)) * np.sqrt(np.sum(np.power(ref, 2), 1)))

    angle = np.arccos(cos_angle)
    angle = angle * 180 / np.pi
    return angle


def cal_gray_index_with_angle(img, method, scale):
    """

    :param img: input color-biased image
    :param method: the method to calculate IIM, option = {'edge', 'std'}
    :param scale: filter scale
    :return: gray index map
    """
    rr, cc, dd = img.shape
    img[img == 0] = eps
    data = []
    t = np.ones([rr, cc])

    if method == 'edge':
        sigma = scale
        for i in range(dd):
            mm = deriv_gauss(np.log(img[:, :, i]), sigma)
            data.append(mm.reshape(-1))
            t = np.logical_and(t, mm < eps) # prevent low contrast region
    else:
        print('error method input !')

    data = np.array(data).T # n * 3
    data[data == 0] = eps

    data_normed = normr(data)
    gt = normr(np.ones_like(data_normed))
    cos_ang = np.clip(np.sum(data_normed*gt, axis=1), 0, 0.9999)
    angular_error = np.arccos(cos_ang)



    Greyidx_angular = np.reshape(angular_error, (rr, cc))
    Greyidx = Greyidx_angular / (np.max(Greyidx_angular) + eps)

    Greyidx_angular[t] = np.max(Greyidx_angular)
    Greyidx[t] = np.max(Greyidx)


    # filter
    siz = 7
    hh = np.ones([siz, siz]) / (siz*siz)
    Greyidx = ndimage.convolve(Greyidx, hh, mode='nearest')
    Greyidx_angular = ndimage.convolve(Greyidx_angular, hh, mode='nearest')

    return Greyidx, Greyidx_angular
def gray_detect_angle_meanshift(img, numGPs, mask, K, kernel, is_angular_ranking):
    return
def detect_gray_with_angle(im, mask, gt):

    Npre = 1

    bandwidth = 0.1

    h, w, n = im.shape
    numGPs = int(np.floor(h*w*Npre // 100))

    '''
    mask saturated and dark pixels
    '''
    mask[np.max(im, axis=2) >= 0.95] = 1
    mask[np.sum(im, axis=2) <= 8/255.0] = 1

    scale = 0.5
    gray_idx_norm, gray_idx_angle = cal_gray_index_with_angle(im, 'edge', scale)

    # sel
    gray_idx_angle[mask] = np.max(gray_idx_angle)
    # cal angle
    angle_sorted = np.sort(gray_idx_angle.copy().reshape(-1))
    angle_thr = angle_sorted[numGPs]

    mask_sel = gray_idx_angle < angle_thr
    print('dd :', numGPs, angle_thr, gray_idx_angle.min,gray_idx_angle.max, mask_sel.shape, np.sum(mask_sel))
    im_selected = im[mask_sel]

    ill = np.sum(im_selected, axis=0).reshape(-1, n)
    ill = ill / np.sqrt(np.sum(ill * ill, 1)).reshape(-1, 1)

    im_choose = im * mask_sel[..., None]
    ill2 = np.sum(im_choose, axis=(0, 1)).reshape(-1, n)
    ill2 = ill2 / np.sqrt(np.sum(ill2 * ill2, 1)).reshape(-1, 1)
    print(numGPs, angle_thr, im_selected.shape, 'est ill: ', ill, ill2)

    an1 = cal_angle(ill, gt)
    an2 = cal_angle(ill2, gt)

    show_fig = 0
    if show_fig:
        gray_idx_norm_3ch = np.tile(gray_idx_norm[..., None], (1, 1, 3))
        im_choose_BGR = im_choose[:, :, ::-1]
        second_row = np.hstack((gray_idx_norm_3ch, im_choose_BGR))

        im_BGR = im[:, :, ::-1]
        # im_mask = im_BGR * mask[..., None]

        wb_gain = np.max(ill2) / ill2
        im_wb = im * wb_gain
        im_BGR_wb = im_wb[:, :, ::-1]

        res1 = np.hstack((im_BGR, im_BGR_wb))

        res = np.vstack((res1, second_row))

        cv2.namedWindow('im', 0)
        cv2.imshow('im', res)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    return ill2, an2

if __name__ == "__main__":
    # single pic
    filename = r'G:\ffcc-master_20201108\ffcc-master\data\shi_gehler\preprocessed\GehlerShi\000129.png'
    imbgr = cv2.imread(filename)
    im = imbgr[:, :, ::-1]
    im = im / 255
    gt_file = filename[:-4] + '.txt'
    ill_gt = np.loadtxt(gt_file)


    h, w, n = im.shape
    mask = np.zeros((h, w)).astype(bool)
    ill, angle = detect_gray_with_angle(im, mask, ill_gt)
    ill = ill.reshape(-1)
    print(ill, angle)
    print(ill[1] / ill)

    # dir
    ills = []
    angles = []
    dir = r'G:\ffcc-master_20201108\ffcc-master\data\shi_gehler\preprocessed\GehlerShi'

    filesets = os.listdir(dir)
    for file in filesets:
        if file.endswith('.png'):
            filename = os.path.join(dir, file)

            im = cv2.imread(filename)
            im = im[:, :, ::-1] / 255
            file_gt = filename[:-4] + '.txt'
            gt = np.loadtxt(file_gt)
            print(filename)
            mask = np.zeros((h, w)).astype(bool)
            ill, angle = detect_gray_with_angle(im, mask, gt)
            ills.append(ill)
            angles.append(angle)
            print(ill, gt, angle)
    angles = np.array(angles)
    np.savetxt('wb_detect_gray_with_angle.txt', angles, delimiter=' ', fmt='%.7f')
    print(angles, np.mean(angles))

你可能感兴趣的:(图像处理算法,深度学习,人工智能,计算机视觉)