常用激活函数:Sigmoid、Tanh、Relu、Leaky Relu、ELU、Mish、Swish等优缺点总结

参考:深度学习—激活函数详解(Sigmoid、tanh、ReLU、ReLU6及变体P-R-Leaky、ELU、SELU、Swish、Mish、Maxout、hard-sigmoid、hard-swish)

1、激活函数的作用

什么是激活函数?
  在神经网络中,输入经过权值加权计算并求和之后,需要经过一个函数的作用,这个函数就是激活函数(Activation Function)。
激活函数的作用?
  首先我们需要知道,如果在神经网络中不引入激活函数,那么在该网络中,每一层的输出都是上一层输入的线性函数,无论最终的神经网络有多少层,输出都是输入的线性组合;其一般也只能应用于线性分类问题中,例如非常典型的多层感知机。若想在非线性的问题中继续发挥神经网络的优势,则此时就需要通过添加激活函数来对每一层的输出做处理&#x

你可能感兴趣的:(object,detection,图像分类,面试)