- 基于NanoDet的无人机交通违规监控系统设计与实现
深度学习&目标检测实战项目
NanoDet无人机目标检测人工智能计算机视觉深度学习
1.引言随着无人机技术的发展,无人机在交通监控领域的应用逐渐增多。无人机能够提供空中视角,具有更高的视野覆盖范围,能够帮助交通管理部门实时监控交通违规行为。本博客将介绍如何使用NanoDet模型实现无人机交通违规监控系统,并结合PyQt5设计一个UI界面来实时展示检测结果。通过该系统,能够检测交通违规行为并做出实时预警,确保交通安全。本博客详细介绍了数据集的构建、模型的训练与推理、碰撞检测算法的实
- 高效快速教你DeepSeek如何进行本地部署并且可视化对话
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
科技文章:高效快速教你DeepSeek如何进行本地部署并且可视化对话摘要:随着自然语言处理(NLP)技术的进步,DeepSeek作为一款基于深度学习的语义搜索技术,广泛应用于文本理解、对话系统及信息检索等多个领域。本文将探讨如何高效快速地在本地部署DeepSeek,并结合可视化工具实现对话过程的监控与分析。通过详尽的步骤、案例分析与代码示例,帮助开发者更好地理解和应用DeepSeek技术。同时,本
- P3375 【模板】KMP
好好学习^按时吃饭
算法
题目来自洛谷网站:思路:从题目名字知道这是KMP模板题目,对于KMP算法,就两步,1、构造next数组。2、在s1中找到s2出现的位置。KMP代码:#includeusingnamespacestd;constintN=1e6+10;chars1[N],s2[N];//全局变量名字不能定义为next//C++标准库中有一个函数名字是nextintnext1[N];//ne数组intmain(){/
- 机器学习——分类、回归、聚类、LASSO回归、Ridge回归(自用)
代码的建筑师
模型学习模型训练机器学习机器学习分类回归正则化项LASSORidge朴素
纠正自己的误区:机器学习是一个大范围,并不是一个小的方向,比如:线性回归预测、卷积神经网络和强化学都是机器学习算法在不同场景的应用。机器学习最为关键的是要有数据,也就是数据集名词解释:数据集中的一行叫一条样本或者实例,列名称为特征或者属性。样本的数量称为数据量,特征的数量称为特征维度机器学习常用库:Numpy和sklearn朴素的意思是特征的各条件都是相互独立的机器学习(模型、策略、算法)损失函数
- 异步编程中的并发编程优化
AI天才研究院
架构师必知必会系列自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明什么是异步编程?为什么要异步编程?浅谈异步编程模型基于事件驱动的模型基于消息队列的模型基于协程的模型为什么要进行并发优化?3.基本算法原理和具体操作步骤1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7.缓存8.异步框架9.模型选择4.具体代码实例和解释说明模块划分1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7
- 算法训练(leetcode)第四十六天 | 110. 字符串接龙、105. 有向图的完全可达性、106. 岛屿的周长
Star Patrick
刷题日记算法leetcode职场和发展
刷题记录*110.字符串接龙105.有向图的完全可达性邻接矩阵邻接表106.岛屿的周长深搜简化代码*110.字符串接龙题目地址使用广搜。本题相当于求最短路径,因此使用广搜。如何应用广搜是一个难点,因为题目给的是字符串而非图的表示(邻接矩阵、邻接表),因此需要自行构建连接关系。题目要求每一步只能修改一个字符,因此从起始字符串开始,对字符串中的每一个字符进行修改,修改后在输入的字符串列表中查找是否存在
- Java架构师成长之路
hweiyu00
分享spring微服务springcloudjava
概述本教程主要从6个方面,全面讲解Java技术栈的知识。1.性能调优深入理解MySQL底层原理、索引逻辑,数据结构与算法。使用Explain进行优化分析MVCC原理剖析日志机制解析2.框架源码掌握Spring底层原理带你手写一个Spring解析IOC、AOP源码、以及事务原理3.并发编程剖析Java底层锁机制CAS、JUC工具使用、AQS源码分析以及并发的集合类的讲解4.分布式开发剖析分布式中使用
- 笔记:代码随想录算法训练营day60:并查集理论基础、寻找存在的路径
jingjingjing1111
笔记
本文为学习并查集理论基础|代码随想录、代码随想录过程中的思考find是找的顶头上司,而不是当前上司,最后怎么也得找到一个顶头上司的上司是自己,要不然这个结构也不成立使用issame替换会使被操作者为当前节点,而非根节点。join(u,v)的功能为将v的根节点挂到u的根节点下模拟过程可以看出,join中的find中的路径压缩要在长度大于2(路径大于1)的时候才会体现出来107.寻找存在的路径卡码网题
- 【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)
天天科研工作室
光伏功率预测算法matlab随机森林机器学习
【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)文章目录【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)文章介绍基本步骤代码分享运行结果参考资料文章介绍随机森林可以应用于光伏功率预测,这是一项重要的任务,旨在估计光伏发电系统的输出功率。光伏功率预测在可再生能源管理、电网调度和能源计划等领域具有广泛的应用。随机森林回
- Golang算法(二)数据结构
小烧卖
算法GO语言
数据结构栈队列双向链表二叉搜索树红黑树栈typeStackstruct{head*Node}typeNodestruct{datainterface{}next*Node}funcNewStack()*Stack{s:=&Stack{head:&Node{data:nil,next:&Node{},},}returns}func(s*Stack)Push(datainterface{}){n:=&
- Python基于深度学习的动物图片识别技术的研究与实现
Java老徐
Python毕业设计python深度学习开发语言深度学习的动物图片识别技术Python动物图片识别技术
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 某人想将手中的一张面值100元的人民币换成10元、5元、2元和1元面值的票子。要求换正好40张,且每种票子至少一张。问:有几种换法?(C语言)
热心市民小汪
代码练习C语言c语言学习java
一、首先分析题目有两点1、总和是100元。2、一共分为四十张且每种至少有一张。二、思路分析。10元的为s张,5元的为w张,2元的为e张,1元的为y张。n为有几种换算法首先,每个至少有一张a>=1,b>=1,c>=1,d>=1。#includeintmain(){inttotal;for(ints=1;s<=10;s++){for(intw=1;w<=20;w++){for(inte=1;e<=40
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- 最新智能优化算法: 贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)求解23个经典函数测试集,MATLAB代码
IT猿手
MATLAB智能优化算法算法matlab开发语言人工智能智能优化算法
一、贪婪个体优化算法贪婪个体优化算法(GreedyManOptimizationAlgorithm,GMOA)是HamedNozari与HosseinAbdi于2024年提出的一种新型受生物启发的元启发式算法,它模拟了抵抗变化的竞争个体的行为。GMOA引入了两个独特的机制:MMO抵抗机制,防止过早替换解;周期性寄生虫清除机制,促进多样性并避免停滞。该算法旨在解决传统优化算法中的过早收敛和缺乏多样性
- 2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享
摘要随着智能优化算法的不断发展,解决高维、复杂的优化问题已成为研究的重要课题。雪雁算法(SnowGeeseAlgorithm,SGA)作为一种新兴的自然启发式优化算法,以其高效的全局搜索能力受到了广泛关注。然而,雪雁算法在处理多峰、多约束和高维复杂问题时,仍面临收敛速度较慢和易陷入局部最优解的问题。为此,本文提出了一种改进型雪雁算法(ISGA),通过引入自适应权重调整机制和混合局部搜索策略,增强了
- 代码随想录算法训练营Day10 | Leetcode 150逆波兰表达式求值、239滑动窗口最大值、 347前 K 个高频元素
Dominic_Holmes
leetcodepython算法数据结构
代码随想录算法训练营Day10|Leetcode150逆波兰表达式求值、239滑动窗口最大值、347前K个高频元素一、反转字符串相关题目:Leetcode150文档讲解:Leetcode150视频讲解:Leetcode1501.Leetcode150.逆波兰表达式求值给你一个字符串数组tokens,表示一个根据逆波兰表示法表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。注意:有效的
- LeetCode算法题(Go语言实现)_07
LuckyLay
Golang学习笔记算法leetcode职场和发展golang
题目给你一个整数数组nums,返回数组answer,其中answer[i]等于nums中除nums[i]之外其余各元素的乘积。题目数据保证数组nums之中任意元素的全部前缀元素和后缀的乘积都在32位整数范围内。请不要使用除法,且在O(n)时间复杂度内完成此题。一、代码实现funcproductExceptSelf(nums[]int)[]int{n:=len(nums)answer:=make([
- 机器学习:让计算机学会思考的艺术
平凡而伟大.
机器学习机器学习人工智能
目录什么是机器学习?机器学习的基本步骤常见的机器学习算法机器学习的实际应用如何入门机器学习?结语在当今数字化时代,机器学习(MachineLearning,ML)已经成为一个炙手可热的话题。从推荐系统到自动驾驶汽车,再到语音助手,机器学习的应用无处不在。然而,对于许多人来说,机器学习仍然是一个神秘而复杂的领域。本文将用通俗易懂的语言,带你走进机器学习的世界,了解它的基本原理和应用。什么是机器学习?
- 机器学习中的 K-均值聚类算法及其优缺点
平凡而伟大.
机器学习机器学习算法均值算法
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
- 一文讲清楚深度学习和机器学习
平凡而伟大.
机器学习人工智能深度学习机器学习人工智能
目录1.定义机器学习(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理机器学习深度学习3.应用场景机器学习深度学习4.主要区别5.为什么选择深度学习?6.总结深度学习和机器学习是人工智能(AI)领域中两个密切相关但有所区别的概念。要清楚地解释它们之间的关系,我们可以从定义、工作原理、应用场景以及两者的主要区别等方面进行探讨。1.定义机器学习(Machin
- 使用 NetworkX 进行图论分析与可视化
aiweker
跟我学python图论python
使用NetworkX进行图论分析与可视化NetworkX是一个用于创建、操作和研究复杂网络的Python库。它提供了丰富的图论算法和数据结构,适用于各种网络分析任务。本文将分点介绍NetworkX的主要功能,并通过代码示例进行详细说明。1.安装NetworkX在开始使用NetworkX之前,首先需要安装它。可以通过pip进行安装:pipinstallnetworkx2.创建图NetworkX支持多
- 流浪地球 - 华为OD机试真题(E卷、Java)
什码情况
华为odjava数据结构算法面试机试
针对刷题难,效率慢,我们提供一对一算法辅导,针对个人情况定制化的提高计划(全称1V1效率更高)。有兴趣的同学可以扫码添加我们的微信(code5bug)了解,免费试课一下。题目描述流浪地球计划在赤道上均匀部署了N个转向发动机,按位置顺序编号为0~N。1).初始状态下所有的发动机都是未启动状态;2).发动机启动的方式分为”手动启动”和”关联启动”两种方式;3).如果在时刻1一个发动机被启动,下一个时刻
- MATLAB的function函数的使用
晚风微凉~
matlab开发语言
在工程应用中,我们经常会遇到算法的计算较为复杂,很多算法的过程重复次数过多的问题,针对这个问题我们可以考虑使用function函数简化代码编写的工作量。1、单个传参在使用function的函数时,我们首先需要定义function函数的结构;function[输出参数]=函数名(输入参数)%注释:function函数的使用一般是比较多的,因此需要注意注释的编写,避免后期工作的误导;主要代码:****
- TCP三次握手与四次挥手(全网最易懂保姆级教程)
秋.
JAVA网络服务器运维javatcp/ip三次握手
一、前置知识准备1.TCP协议特性-面向连接:通信前需要建立专用通道-可靠传输:通过确认机制保证数据可达-全双工通信:双方可同时发送数据-流量控制:滑动窗口机制-拥塞控制:慢启动算法2.关键概念说明|术语|说明||------------|----------------------------------------------------------------------||**SYN**|
- 三维点云重建的原理及代码
晚风微凉~
matlab图像处理
点云重建是将来自各种传感器(如激光雷达、相机等)采集的离散点云数据转换为具有结构和几何形状的物体模型的过程。在这个过程中,算法的核心任务是从大量的离散点中提取出具有几何意义的特征,并将这些特征组合成相应的物体模型。在实际应用中,无法获得物体所有表面的三维坐标数据,因此点云重建算法必须处理部分点云数据,尽可能准确地还原物体的几何结构。点云重建的目标是通过对描述物体表面形状的点数据进行处理,根据它们的
- 使用AIOps进行更好的事件管理
茵赛飞3D CAD数据转换软件
pagerdutydevops人工智能运维
DevOps为科技界带来了更加协作和高效的工作流程。随着AIOps的集成,自动化更进一步,使用人工智能为团队提供更快的根本原因分析和算法降噪。主要从采用AIOps中受益的主要领域之一是事件管理。AIOps可以帮助DevOps团队自动化工作流程,以实现更智能、更高效的事件管理,从而腾出时间让IT运营团队成员专注于创新以改善用户体验。在本文中,我们将了解AIOps如何从检测和识别到响应改进事件管理,以
- 实时光线追踪技术:Ray Tracing_2024-07-21_02-55-16.Tex
chenjj4003
游戏开发python算法人工智能矩阵线性代数骨骼绑定开发语言
实时光线追踪技术:RayTracing实时光线追踪技术教程基础知识光线追踪原理光线追踪是一种渲染技术,它通过模拟光线在场景中的传播和反射来生成图像。在实时光线追踪中,这一过程被优化以在有限的时间内完成,通常用于游戏和实时动画。其核心原理是逆向追踪,即从观察者(摄像机)发出光线,而不是从光源发出,这样可以减少计算量。示例:光线追踪的基本算法#Python示例代码,展示如何计算光线与场景中物体的交点c
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默