ComSec作业二:AES

文章目录

  • 前言
  • 一、描述AES中S-Box的生成过程
  • 二、证明公式6.9与公式6.4等价
  • 三、写一个GF(2^8)的乘法函数Mul
  • 四、写一个程序,生成AES算法中的S-Box
  • 总结


前言

AES 是密码学中的高级加密标准,又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,它能抵抗所有已知的攻击,且在各平台上易于实现,速度快;设计简单。


一、描述AES中S-Box的生成过程

  1. 初始化 S-box

  2. 将 S-Box中的值映射成其乘法逆元B【运用扩展欧几里得算法】

  3. 用第 2 步的结果做仿射变换 【{63} 记为C】

      B' = X*B ⊕ {63}
    

具体求解步骤如下:(0001 1111)
这里以第B行第2列元素{B2}为例

(1)求16进制数 {B2} 在有限域 GF( 2 8 2^8 28) 上的逆元:
ComSec作业二:AES_第1张图片
从表中得到 (0000 1101) * (1 0001 1011) + (0001 1111) * (1011 0010) = 1
所以 (0001 1111),即{1F},是{B2}在有限域 GF( 2 8 2^8 28) 上的逆元

(2)用 {1F} 做仿射变换

   B = {1F} = 0001 1111
    = b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 b_7b_6b_5b_4b_3b_2b_1b_0 b7b6b5b4b3b2b1b0

   C = {63} = 0110 0011
    = c 7 c 6 c 5 c 4 c 3 c 2 c 1 c 0 c_7c_6c_5c_4c_3c_2c_1c_0 c7c6c5c4c3c2c1c0

   B’ = b 7 ′ b 6 ′ b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ b'_7b'_6b'_5b'_4b'_3b'_2b'_1b'_0 b7b6b5b4b3b2b1b0

   由仿射变换定义:
     b 0 ′ b'_0 b0 = b 0 ⊕ b 4 ⊕ b 5 ⊕ b 6 ⊕ b 7 ⊕ c 0 b_0⊕ b_4⊕ b_5⊕ b_6⊕ b_7⊕c_0 b0b4b5b6b7c0 = 1
     b 1 ′ b'_1 b1 = b 1 ⊕ b 5 ⊕ b 6 ⊕ b 7 ⊕ b 0 ⊕ c 1 b_1⊕ b_5⊕ b_6⊕ b_7⊕ b_0⊕c_1 b1b5b6b7b0c1 = 1
     b 2 ′ b'_2 b2 = b 2 ⊕ b 6 ⊕ b 7 ⊕ b 0 ⊕ b 1 ⊕ c 2 b_2⊕ b_6⊕ b_7⊕ b_0⊕ b_1⊕c_2 b2b6b7b0b1c2 = 1
     b 3 ′ b'_3 b3 = b 3 ⊕ b 7 ⊕ b 0 ⊕ b 1 ⊕ b 2 ⊕ c 3 b_3⊕ b_7⊕ b_0⊕ b_1⊕ b_2⊕c_3 b3b7b0b1b2c3 = 0
     b 4 ′ b'_4 b4 = b 4 ⊕ b 0 ⊕ b 1 ⊕ b 2 ⊕ b 3 ⊕ c 4 b_4⊕ b_0⊕ b_1⊕ b_2⊕ b_3⊕c_4 b4b0b1b2b3c4 = 1
     b 5 ′ b'_5 b5 = b 5 ⊕ b 1 ⊕ b 2 ⊕ b 3 ⊕ b 4 ⊕ c 5 b_5⊕ b_1⊕ b_2⊕ b_3⊕ b_4⊕c_5 b5b1b2b3b4c5 = 1
     b 6 ′ b'_6 b6 = b 6 ⊕ b 2 ⊕ b 3 ⊕ b 4 ⊕ b 5 ⊕ c 6 b_6⊕ b_2⊕ b_3⊕ b_4⊕ b_5⊕c_6 b6b2b3b4b5c6 = 0
     b 7 ′ b'_7 b7 = b 7 ⊕ b 3 ⊕ b 4 ⊕ b 5 ⊕ b 6 ⊕ c 7 b_7⊕ b_3⊕ b_4⊕ b_5⊕ b_6⊕c_7 b7b3b4b5b6c7 = 0

   所以 B’ = 0011 0111 = {37}
   因此,在S-Box中,第B行第2列对应 的值为{37}。
   以此类推,即可求出其他位置的对应值
   注意:0无逆元,S-box的构造规则要求{00}映射到其本身
ComSec作业二:AES_第2张图片


二、证明公式6.9与公式6.4等价

ComSec作业二:AES_第3张图片

ComSec作业二:AES_第4张图片


   解: S 0 , j ′ = S'_{0,j} = S0,j= S 0 , j ⊕ T m p ⊕ [ 2 • ( S 0 , j ⊕ S 1 , j ) ] S_{0,j} ⊕ Tmp ⊕[2 •(S_{0,j} ⊕S_{1,j} )] S0,jTmp[2•(S0,jS1,j)]
        = S 0 , j ⊕ S 0 , j ⊕ S 1 , j ⊕ S 2 , j ⊕ S 3 , j ⊕ [ 2 • ( S 0 , j ⊕ S 1 , j ) ] =S_{0,j} ⊕ S_{0,j} ⊕S_{1,j} ⊕S_{2,j} ⊕S_{3,j}⊕[2 •(S_{0,j} ⊕S_{1,j} )] =S0,jS0,jS1,jS2,jS3,j[2•(S0,jS1,j)]
        = S 1 , j ⊕ S 2 , j ⊕ S 3 , j ⊕ ( 2 • S 0 , j ) ⊕ ( 2 • S 1 , j ) =S_{1,j} ⊕S_{2,j} ⊕S_{3,j}⊕(2 •S_{0,j} ) ⊕(2 •S_{1,j} ) =S1,jS2,jS3,j(2•S0,j)(2•S1,j)
        = ( 2 • S 0 , j ) ⊕ ( 3 • S 1 , j ) ⊕ S 2 , j ⊕ S 3 , j =(2 •S_{0,j} ) ⊕(3 •S_{1,j} ) ⊕S_{2,j} ⊕S_{3,j} =(2•S0,j)(3•S1,j)S2,jS3,j

   同理可证得其他三项
   所以说,公式 6.9 与 公式 6.4 等价

三、写一个GF(2^8)的乘法函数Mul

写一个 GF( 2 8 2^8 28) 的乘法函数Mul,输入 GF( 2 8 2^8 28) 的两个元素 a、b,输出a * b 。
提示:回忆 CINTA 的 Simple Multiplication。

#include
using namespace std;

unsigned char XTIME(unsigned char x)     //求一个数x与0x02的乘积
unsigned char Mul(unsigned char a, unsigned char b)  //GF(2^8)的乘法函数

void main()
{
	int a,b;
	cout<<"输入 a 和 b 的值"<<endl;
	scanf("%x", &a);        
	scanf("%x", &b);
	cout <<"a*b = ";
	printf("%#X", Mul(a, b));
	cout<<endl;
}


unsigned char XTIME(unsigned char x) {     
	return ((x << 1) ^ ((x & 0x80) ? 0x1b : 0x00));
}

unsigned char Mul(unsigned char a, unsigned char b) {
	unsigned char temp[8] = { a };
	unsigned char tempmultiply = 0x00;
	int i = 0;
	for (i = 1; i < 8; i++) {
		temp[i] = XTIME(temp[i - 1]);  //生成0x01,0x02等 8个数
	}
	tempmultiply = (b & 0x01) * a;
	for (i = 1; i <= 7; i++) {
		tempmultiply ^= (((b >> i) & 0x01) * temp[i]);
	}
	return tempmultiply;
}

  1. 原理:
    在二进制中,所有的数都能用0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80异或得到
  2. 预处理:
    对于 a 本身,依次乘以以上8个数,得到8个预知结果
  3. 结果:
    根据 b 把上面预知的结果异或起来,即可得到 a*b 的结果


四、写一个程序,生成AES算法中的S-Box

#include 


unsigned char S_box[16][16];    
void initialize();                       //初始化 S-box[i][j] <- {ij} 
unsigned char msb(unsigned short num);   //找到非零最高位并返回
unsigned char divide(unsigned short a, unsigned char b, unsigned char &r);    //双字节的多项式除法,返回a/b
unsigned char Mul(unsigned char a, unsigned char b);    //GF(2^8)乘法,返回a * b 
unsigned char inverse(unsigned char b);   //扩展欧几里得算法求b在GF(2^8)的乘法逆元
unsigned char map(unsigned char a);      //映射 

void main()
{
	initialize();
	unsigned char i, j;
	for(i = 0; i <= 0xF; i++)
	{
		printf("\n");
		for(j = 0; j <= 0xF; j++)
		{
			S_box[i][j] = map(S_box[i][j]);
			printf("%02X ",S_box[i][j]);
		}
	}
	printf("\n");
}

void initialize()
{
	unsigned char i, j;
	for(i = 0; i <= 0xF; i++)
	{
		for(j = 0; j <= 0xF; j++)
		{
			S_box[i][j] = inverse((i << 4) + j);  //使第i行第j列的元素为{xj}

		}
	}
}

unsigned char msb(unsigned short num)
{
	unsigned char i;
	for(i = 0; i <= 8; i++)
	{
		if(!(num >> (i + 1)))
		{
			return i;
		}
	}
}


// a/b
unsigned char divide(unsigned short a, unsigned char b, unsigned char &r)
{
	unsigned char a_msb = msb(a);
	unsigned char b_msb = msb(b);
	if(a < b)
	{
		r = a;
		return 0;
	}
	unsigned char bit = a_msb - b_msb;
	unsigned short temp = b;
	temp = temp << bit;
	a = a ^ temp;
	return (1 << bit) | divide(a, b, r);
}


unsigned char XTIME(unsigned char x) {     
	return ((x << 1) ^ ((x & 0x80) ? 0x1b : 0x00));
}

// a*b
unsigned char Mul(unsigned char a, unsigned char b) {
	unsigned char temp[8] = { a };
	unsigned char tempmultiply = 0x00;
	int i = 0;
	for (i = 1; i < 8; i++) {
		temp[i] = XTIME(temp[i - 1]);
	}
	tempmultiply = (b & 0x01) * a;
	for (i = 1; i <= 7; i++) {
		tempmultiply ^= (((b >> i) & 0x01) * temp[i]);
	}
	return tempmultiply;
}

unsigned char inverse(unsigned char b) 
{
	if(b == 0)
		return 0;
		
	short r0 = 0x11B;
	unsigned char r1 = b, r2, q;

	unsigned char w0 = 0, w1 = 1, w2;
	q = divide(r0, r1 , r2);
	w2 = w0 ^ Mul(q, w1);
	while(1)
	{
		if(r2 == 0)
			break;
		r0 = r1;
		r1 = r2;
		q = divide(r0, r1, r2);

		w0 = w1;
		w1 = w2;
		w2 = w0 ^ Mul(q, w1);
	}
	return w1;
}

unsigned char map(unsigned char a)
{
	unsigned char c = 0x63;
	unsigned char res = 0x0;
	unsigned char temp = 0x0;
	unsigned char i;
	for(i = 0; i < 8; i++)
	{
		temp = temp ^ ((a >> i) & 0x1) ^ ((a >> ((i + 4) % 8)) & 0x1);//优先级>> 高于 & 
		temp = temp ^ ((a >> ((i + 5) % 8)) & 0x1) ^ ((a >> ((i + 6) % 8)) & 0x1);
		temp = temp ^ ((a >> ((i + 7) % 8)) & 0x1) ^ ((c >> i) & 0x1);
		res = res | (temp << i);
		temp = 0x0;
	}
	return res;
}


总结

通过本章的学习,掌握了 GF( 2 8 2^8 28) 内的各种运算操作,以及AES中S-Box的生成


有限域GF(2^8)内乘法代码实现以及原理

你可能感兴趣的:(算法,c++,网络安全)