模拟退火算法
import math
import time
import random
# 初始温度
T = 50000
# 最低温度
T_end = 1e-8
# 在每个温度下的迭代次数
L = 100
# 退火系数
delta = 0.98
# 31个城市的坐标
citys = [[1304, 2312], [3639, 1315], [4177, 2244], [3712, 1399], [3488, 1535], [3326, 1556], [3238, 1229], [4196, 1004],
[4312, 790], [4386, 570], [3007, 1970], [2562, 1756], [2788, 1491], [2381, 1676], [1332, 695], [3715, 1678],
[3918, 2179], [4061, 2370], [3780, 2212], [3676, 2578], [4029, 2838], [4263, 2931], [3429, 1908], [3507, 2367],
[3394, 2643], [3439, 3201], [2935, 3240], [3140, 3550], [2545, 2357], [2778, 2826], [2370, 2975]]
# 存储两个城市之间的距离
d = [[0 for i in range(31)] for j in range(31)]
# 存储一条路径
ans = []
# 计算降温次数
cnt = 0
# 计算两个城市之间的距离
def get_city_distance():
for i in range(len(citys)):
for j in range(i, len(citys)):
d[i][j] = d[j][i] = math.sqrt((citys[i][0] - citys[j][0]) ** 2 + (citys[i][1] - citys[j][1]) ** 2)
# 使用随机交换路径中两个城市的位置来产生一条新路径
def create_new(a):
#a=list(range(len(a)))
i = random.randint(0, len(a) - 1)
j = random.randint(0, len(a) - 1)
a = list(a)
a[i], a[j] = a[j], a[i]
return a
# 获取路径的长度
def get_route_distance(a):
dist = 0
for i in range(len(a) - 1):
dist += d[a[i]][a[i + 1]]
return dist
#模拟退火
def saa():
# ********** Begin **********#
# ********** End **********#
#函数返回三个参数
#ans:路径,例如:[14, 13, 19, 18, 15, 12, 9, 28, 7, 17, 27, 11, 26, 20, 6, 16, 30, 2, 21, 25, 22, 8, 0, 10, 29, 4, 5, 23, 3, 1, 24]
#result:路径长度
#cnt:降温次数
#路径长度在50000以内即可,降温次数最终返回值应为1448
return ans,result,cnt
遗传算法
import numpy as np
import math
import random
import time
start = time.time()
# 31个城市的坐标
city_condition=[[106.54,29.59],[ 91.11,29.97],[ 87.68,43.77],[106.27,38.47],[111.65,40.82],
[108.33,22.84],[126.63,45.75],[125.35,43.88],[123.38,41.8 ],[114.48,38.03],[112.53,37.87],
[101.74,36.56],[117.0,36.65],[113.6,34.76],[118.78,32.04],[117.27,31.86],
[120.19,30.26],[119.3,26.08],[115.89,28.68],[113.0,28.21],[114.31,30.52],
[113.23,23.16],[121.5,25.05],[110.35,20.02],[103.73,36.03],[108.95,34.27],
[104.06,30.67],[106.71,26.57],[102.73,25.04],[114.1,22.2 ],[113.33,22.13]]
# 距离矩阵
city_count = 31
Distance = np.zeros([city_count, city_count])
for i in range(city_count):
for j in range(city_count):
Distance[i][j] = math.sqrt(
(city_condition[i][0] - city_condition[j][0]) ** 2 + (city_condition[i][1] - city_condition[j][1]) ** 2)
# 种群数
count = 200
# 改良次数
improve_count = 500
# 进化次数
iteration = 200
# 设置强者的定义概率,即种群前20%为强者
retain_rate = 0.2
# 变异率
mutation_rate = 0.1
# 设置起点
index = [i for i in range(city_count)]
#总距离
def get_total_distance(path_new):
distance = 0
for i in range(city_count - 1):
# count为30,意味着回到了开始的点,此时的值应该为0.
distance += Distance[int(path_new[i])][int(path_new[i + 1])]
distance += Distance[int(path_new[-1])][int(path_new[0])]
return distance
# 改良
#思想:随机生成两个城市,任意交换两个城市的位置,如果总距离减少,就改变染色体。
def improve(x):
i = 0
distance = get_total_distance(x)
while i < improve_count:
u = random.randint(0, len(x) - 1)
v = random.randint(0, len(x) - 1)
if u != v:
new_x = x.copy()
## 随机交叉两个点,t为中间数
t = new_x[u]
new_x[u] = new_x[v]
new_x[v] = t
new_distance = get_total_distance(new_x)
if new_distance < distance:
distance = new_distance
x = new_x.copy()
else:
continue
i += 1
# 适应度评估,选择,迭代一次选择一次
def selection(population):
# 对总距离从小到大进行排序
graded = [[get_total_distance(x), x] for x in population]
graded = [x[1] for x in sorted(graded)]
# 选出适应性强的染色体
# ********** Begin **********#
# ********** End **********#
#适应度强的集合,直接加入选择中
# ********** Begin **********#
# ********** End **********#
## 轮盘赌算法选出K个适应性不强的个体,保证种群的多样性
s = graded[retain_length:]
# 挑选的不强的个数
k = count * 0.2
# 存储适应度
a = []
for i in range(0, len(s)):
a.append(get_total_distance(s[i]))
sum = np.sum(a)
b = np.cumsum(a / sum)
while k > 0: # 迭代一次选择k条染色体
t = random.random()
for h in range(1, len(b)):
if b[h - 1] < t <= b[h]:
parents.append(s[h])
k -= 1
break
return parents
# 交叉繁殖
def crossover(parents):
# 生成子代的个数,以此保证种群稳定
target_count = count - len(parents)
# 孩子列表
children = []
while len(children) < target_count:
male_index = random.randint(0, len(parents) - 1)
female_index = random.randint(0, len(parents) - 1)
#在适应度强的中间选择父母染色体
if male_index != female_index:
male = parents[male_index]
female = parents[female_index]
left = random.randint(0, len(male) - 2)
right = random.randint(left + 1, len(male) - 1)
# 交叉片段
gene1 = male[left:right]
gene2 = female[left:right]
#得到原序列通过改变序列的染色体,并复制出来备用。
child1_c = male[right:] + male[:right]
child2_c = female[right:] + female[:right]
child1 = child1_c.copy()
child2 = child2_c.copy()
#已经改变的序列=>去掉交叉片段后的序列
for o in gene2:
child1_c.remove(o)
for o in gene1:
child2_c.remove(o)
#交换交叉片段
# ********** Begin **********#
# ********** End **********#
return children
# 变异
def mutation(children):
#children现在包括交叉和优质的染色体
for i in range(len(children)):
if random.random() < mutation_rate:
child = children[i]
#产生随机数
u = random.randint(0, len(child) - 4)
v = random.randint(u + 1, len(child) - 3)
w = random.randint(v + 1, len(child) - 2)
child = child[0:u] + child[v:w] + child[u:v] + child[w:]
children[i] = child
return children
# 得到最佳纯输出结果
def get_result(population):
graded = [[get_total_distance(x), x] for x in population]
graded = sorted(graded)
return graded[0][0], graded[0][1]
蚁群算法
import numpy as np
import math
import random
import time
# 31个城市的坐标
city_condition=[[106.54,29.59],[ 91.11,29.97],[ 87.68,43.77],[106.27,38.47],[111.65,40.82],
[108.33,22.84],[126.63,45.75],[125.35,43.88],[123.38,41.8 ],[114.48,38.03],[112.53,37.87],
[101.74,36.56],[117.0,36.65],[113.6,34.76],[118.78,32.04],[117.27,31.86],
[120.19,30.26],[119.3,26.08],[115.89,28.68],[113.0,28.21],[114.31,30.52],
[113.23,23.16],[121.5,25.05],[110.35,20.02],[103.73,36.03],[108.95,34.27],
[104.06,30.67],[106.71,26.57],[102.73,25.04],[114.1,22.2 ],[113.33,22.13]]
"""
距离矩阵和总距离的计算
"""
#距离矩阵
city_count = 31
Distance = np.zeros((city_count, city_count))
for i in range(city_count):
for j in range(city_count):
if i != j:
Distance[i][j] = math.sqrt((city_condition[i][0] - city_condition[j][0]) ** 2 + (city_condition[i][1] - city_condition[j][1]) ** 2)
else:
Distance[i][j] = 100000
#适应度计算
def get_total_distance(path_new):
distance = 0
# ********** Begin **********#
# ********** End **********#
return distance
"""
两个难点
1.城市的选择:初始城市选择和下一个城市的选择设计
2.信息素的更新
"""
def main():
##参数设计
# 蚂蚁数量
AntCount = 10
# 城市数量
city_count = 31
# 信息素
alpha = 1 # 信息素重要程度因子
beta = 5 # 启发函数重要程度因子
rho = 0.1 #挥发速度
iter = 0 # 迭代初始值
iteration = 200 # 最大迭代值
Q = 1
# 初始信息素矩阵,全是为1组成的矩阵
pheromonetable = np.ones((city_count, city_count))
# print(pheromonetable)
# 候选集列表
candidate = np.zeros((AntCount, city_count)).astype(int) # 存放100只蚂蚁的路径(一只蚂蚁一个路径),一共就Antcount个路径,一共是蚂蚁数量*31个城市数量
path_best = np.zeros((iteration, city_count)) # path_best存放的是相应的,每次迭代后的最优路径,每次迭代只有一个值
# 存放每次迭代的最优距离
distance_best = np.zeros(iteration)
#怎么处理对角线的元素是0的情况
etable = 1.0 / Distance # 倒数矩阵
while iter < iteration:
"""
#路径创建
"""
## first:蚂蚁初始点选择
# ********** Begin **********#
if AntCount <= city_count:
candidate[:, 0] = np.random.permutation(range(city_count))[:AntCount]
else:
candidate[:city_count, 0] = np.random.permutation(range(city_count))[:]
candidate[city_count:, 0] = np.random.permutation(range(city_count))[:AntCount - city_count]
length = np.zeros(AntCount)#每次迭代的N个蚂蚁的距离值
# ********** End **********#
## second:选择下一个城市选择
for i in range(AntCount):
# 移除已经访问的第一个元素
unvisit = list(range(city_count)) # 列表形式存储没有访问的城市编号
visit = candidate[i, 0] # 当前所在点,第i个蚂蚁在第一个城市
unvisit.remove(visit) # 在未访问的城市中移除当前开始的点
for j in range(1, city_count):#访问剩下的city_count个城市,city_count次访问
protrans = np.zeros(len(unvisit))#每次循环都更改当前没有访问的城市的转移概率矩阵1*30,1*29,1*28...
# 下一城市的概率函数
for k in range(len(unvisit)):
# 计算当前城市到剩余城市的(信息素浓度^alpha)*(城市适应度的倒数)^beta
# etable[visit][unvisit[k]],(alpha+1)是倒数分之一,pheromonetable[visit][unvisit[k]]是从本城市到k城市的信息素
# ********** Begin**********#
protrans[k] = np.power(pheromonetable[visit][unvisit[k]], alpha) * np.power(etable[visit][unvisit[k]], (alpha + 1))
# ********** End **********#
# 累计概率,轮盘赌选择
cumsumprobtrans = (protrans / sum(protrans)).cumsum()
cumsumprobtrans -= np.random.rand()
# 求出离随机数产生最近的索引值
k = unvisit[list(cumsumprobtrans > 0).index(True)]
# 下一个访问城市的索引值
candidate[i, j] = k
unvisit.remove(k)
length[i] += Distance[visit][k]
visit = k # 更改出发点,继续选择下一个到达点
length[i] += Distance[visit][candidate[i, 0]]#最后一个城市和第一个城市的距离值也要加进去
"""
更新路径等参数
"""
# 如果迭代次数为一次,那么无条件让初始值代替path_best,distance_best.
if iter == 0:
distance_best[iter] = length.min()
path_best[iter] = candidate[length.argmin()].copy()
else:
# 如果当前的解没有之前的解好,那么当前最优还是为之前的那个值;并且用前一个路径替换为当前的最优路径
if length.min() > distance_best[iter - 1]:
distance_best[iter] = distance_best[iter - 1]
path_best[iter] = path_best[iter - 1].copy()
else: # 当前解比之前的要好,替换当前解和路径
distance_best[iter] = length.min()
path_best[iter] = candidate[length.argmin()].copy()
"""
信息素的更新
"""
#信息素的增加量矩阵
changepheromonetable = np.zeros((city_count, city_count))
for i in range(AntCount):
for j in range(city_count - 1):
# 当前路径比如城市23之间的信息素的增量:1/当前蚂蚁行走的总距离的信息素
# ********** Begin **********#
changepheromonetable[candidate[i, j]][candidate[i][j + 1]] += Q / length[i]
# ********** End **********#
#最后一个城市和第一个城市的信息素增加量
changepheromonetable[candidate[i, j + 1]][candidate[i, 0]] += Q / length[i]
#信息素更新的公式:
# ********** Begin **********#
pheromonetable = (1 - rho) * pheromonetable + changepheromonetable
# ********** End **********#
iter += 1
return distance_best,path_best,iteration
粒子群算法
"""
1.速度更新公式
new_v = w*v + c1 * rand() * (pbest - position) + c2 * rand() * (gbest-position)
v为粒子当前的速度,w为惯性因子(有速度就有运动惯性)。rand()为随机数生成函数,能够生成0-1之间的随机数。
position为粒子当前的位置,pbest为本粒子历史上最好的位置,gbest为种群中所有粒子中当前最好的位置。c1和c2表示学习因子
分别向本粒子历史最好位置和种群中当前最好位置进行学习。
2.位置更新公式
new_position = position + new_v * t
"""
import random
import time
import numpy as np
# 初始参数设置
# 惯性权重
w = 0.6
# 学习因子
c1 = c2 = 1
# 空间维度
n = 1
# 粒子群数量
N = 20
# 迭代次数
iteration = 100
k0 = -10
k1 = 10
# 适应度函数设计
def get_fitness(x):
return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)
# 第一次种群初始化
def getinitialPopulation(N):
"""
:param populationSize:种群规模
:return:
"""
chromsomes = []
for popusize in range(N):
a = random.uniform(k0, k1)
chromsomes.append(a)
return chromsomes
# 初始速度的分配
def getinitialV(P):
velocity0 = []
for v in range(0, N):
aa = 0
velocity0.append(aa)
return velocity0
# 更新(迭代的开始)
def updateV(v,P,gbest,pbest):
for i in range(0,N):
v[i] = w * v[i] + c1 * np.random.random() * (pbest[i]- P[i]) + c2 * np.random.random() * (gbest - P[i])
P[i] = P[i] + v[i]
# 边界控制
for i in range(N):
if P[i] < k0:
P[i] = k0
elif P[i]> k1:
P[i] = k1
## 最优pbest
# ********** Begin **********#
# ********** End **********#
return v, P
## 全局最优的寻找
def g_best(P,gbest,globalBestCost):
# 在各个局部最优中找到全局最优
# ********** Begin **********#
# ********** End **********#
return gbest, globalBestCost
##主函数的设计
def main():
## 种群的初始化
P = getinitialPopulation(N)
gbest = 0
pbest = P.copy()
# v的初始化
velocity = getinitialV(P)
# 迭代计数器
iter = 0
iteration = 50
# 全局最优值的存储
globalBestCost = []
globalBestCost.append(get_fitness(gbest))
while iter < iteration:
## 种群的更新
velocity, P = updateV(velocity, P, gbest, pbest)
gbest, globalBestCost = g_best(P, gbest, globalBestCost)
### 更新种群中的当前最优和全局最优
iter = iter + 1
return iter,gbest,globalBestCost[-1]