- 如何在GNSS信号丢失时依然保持精准导航?
EriccoShaanxi
技术文章无人机算法数据结构人工智能
在无人机飞行、自动驾驶或水下探测等场景中,GNSS信号遮挡或干扰是常见挑战。ER-GNSS/MINS-03组合导航系统凭借深度融合的GNSS/INS技术,即使在卫星信号中断时,也能持续提供高精度定位、姿态和速度数据,确保任务不间断执行。战术级MEMS惯性器件,稳定可靠该系统采用高性能MEMS陀螺仪(零偏不稳定性<0.3°/h)和加速度计(零偏不稳定性<10μg),结合全温补偿技术,在-40℃~+8
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 目标检测数据集——交通信号灯红绿灯检测数据集
在智能交通系统迅速发展的背景下,准确且实时地识别交通信号灯的状态对于提升道路安全和优化交通流量管理至关重要。无论是自动驾驶汽车还是辅助驾驶技术,可靠地检测并理解交通信号灯的指示——特别是红灯与绿灯的区别——是确保交通安全、避免交通事故的关键环节之一。然而,复杂的光照条件、不同的天气状况以及信号灯被遮挡等情况都给交通信号灯的识别带来了不小的挑战。这是专门针对交通信号灯(尤其是红绿灯)检测的数据集,旨
- AI取代人类?不,真正淘汰你的是“不会用AI”的人
zhuzhi
人工智能chatgpt
“AI会让人类失业吗?”——这个问题在过去几年被反复讨论。ChatGPT的爆火、MidJourney颠覆设计行业、自动驾驶取代司机……似乎AI正在“抢走”人类的工作。但真相是:AI不会取代所有人,但它会取代那些不会使用AI的人。未来10年,职场竞争不再是“人类VSAI”,而是**“会用AI的人”VS“不用AI的人”**。就像20年前互联网刚普及时,会用搜索引擎的人比只会翻书的人效率高10倍;今天,
- 车载以太网-组播
天赐好车
车载以太网车载以太网组播
目录车载以太网中的组播:从原理到车载应用**一、组播的核心概念与车载网络价值****二、车载以太网组播的关键协议与机制**1.**组播IP地址管理(IGMP协议)**2.**组播数据链路层实现(MAC地址映射)****三、车载以太网组播的典型应用场景**1.**自动驾驶与传感器数据分发**2.**车载信息娱乐与多媒体传输**3.**车载诊断与OTA升级****四、车载组播的关键技术挑战与解决方案*
- 车载毫米波雷达行业发展5——企业
奔袭的算法工程师
行业资讯人工智能自动驾驶目标检测
5.1博世5.1.1公司简介博世集团创立于1886年,业务涵盖汽车与智能交通技术、工业技术、消费品、能源与建筑技术四大领域,是德国最大的工业企业之一、全球最大的汽车零部件供应商、最早研究车载毫米波雷达的企业之一。博世在高级辅助驾驶和自动驾驶上拥有业界最为领先和完整的产品线,也是智能驾驶行业发展的风向标。在中国市场,2022年,博世在前向雷达市场的份额为40.54%,占据着国内前雷达市场第一的位置。
- 自动驾驶:特斯拉 Model Y全自动驾驶交付的技术原理
InnoLink_1024
自动驾驶人工智能自动驾驶人工智能机器学习
特斯拉ModelY首次实现全程无人控制的全自动驾驶交付,依赖于其先进的FSD(FullSelf-Driving)系统,结合强大的硬件和软件架构。以下从自动驾驶技术的角度,详细介绍其工作原理:1.硬件架构:HW5.0感知与计算平台特斯拉ModelY的全自动驾驶交付基于最新的**HW5.0(Hardware5.0)**平台,其核心硬件包括:传感器套件:12个高清摄像头:提供360°视觉覆盖,分辨率高达
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- ROS 避障技术介绍
Xian-HHappy
机器人-Robotros避障
ROS避障技术介绍一、ROS避障系统概述ROS(机器人操作系统)作为移动机器人开发的主流框架,其避障技术依托模块化设计,通过传感器数据融合、环境建模与运动规划实现动态障碍物规避。在物流机器人、服务机器人、自动驾驶等场景中,ROS避障系统需满足实时性、安全性与灵活性要求,核心流程包括环境感知-障碍建模-路径规划-运动控制四个环节。二、避障核心组件与原理1.传感器层:环境信息获取激光雷达(如Velod
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”
Echo_Wish
Python!实战!python自动驾驶汽车
Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”在自动驾驶技术的演进过程中,多传感器融合(Multi-SensorFusion)是不可或缺的一环。单一传感器往往存在局限性,例如摄像头怕光线变化,激光雷达价格昂贵,毫米波雷达分辨率有限,但如果将它们结合起来,就能形成一个更全面、更可靠的环境感知系统。今天,我们就来聊聊如何用Python实现自动驾驶中的多传感器融合,并结合最新技术趋势
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- TensorFlow:开启智能时代的引擎
科技林总
DeepSeek学AI人工智能
想象一下,计算机能看懂病历、汽车能自动驾驶、机器能创作艺术——这一切的核心,正是深度学习的力量。而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。---###**一、背景:为什么需要TensorFlow?1.**深度学习的爆发**-传统编程无法解决图像识别、自然语言处理等复杂问题。-神经网络需要高效工具处理海量数据和计算。2.**Google的答案**-2015年开源Tens
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- MCP 与 AI 任务分解:如何让 AI 高效执行复杂任务?
Echo_Wish
Python进阶人工智能
MCP与AI任务分解:如何让AI高效执行复杂任务?在人工智能应用中,任务分解(TaskDecomposition)是一个绕不开的话题。无论是自动驾驶、智能客服,还是代码生成,AI都需要将复杂问题拆解成可执行的小任务,逐步完成目标。而在AI领域,MCP(Multi-StepCognitiveProcessing,多步认知处理)是一种前沿技术,旨在提升AI的任务分解能力,使其能够更精准、高效地执行复杂
- 车联网网络安全渗透测试:深度解析与实践
ke0hly
web安全网络安全物联网安全架构安全威胁分析
引言随着汽车智能化、网联化程度的不断深入,车联网(IoV)已成为连接人、车、路、云的关键枢纽。然而,技术进步的同时也带来了前所未有的网络安全挑战。从车载系统到云端平台,从车内通信到V2X通信,车联网的每一个环节都可能成为潜在的攻击面,一旦被恶意利用,将直接威胁到驾乘人员的生命财产安全,甚至影响国家安全和公共秩序。因此,构建一套全面、深入、实战化的车联网网络安全渗透测试流程和方法,对于保障车联网的健
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 大模型的“Tomcat”:一文读懂AI推理引擎(Inference Engine)
人工智能
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!魔都架构师|全网30W技术追随者大厂分布式系统/数据中台实战专家主导交易系统百万级流量调优&车联网平台架构AIGC应用开发先行者|区块链落地实践者以技术驱动创新,我们的征途是改变世界!实战干货:编程严选网1推理引擎是啥?从熟悉的“服务器”说起,想象你用Java写好了一个业务应用,如订单处理服务,打成一个JAR或WAR包。这包能直接
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- AI伦理与自动驾驶:当机器掌握方向盘时的道德抉择
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能自动驾驶unixai
AI伦理与自动驾驶:当机器掌握方向盘时的道德抉择关键词:AI伦理、自动驾驶、道德算法、电车难题、责任归属、技术监管、人机协作摘要:本文深入探讨自动驾驶技术发展过程中面临的伦理挑战,从经典的"电车难题"出发,分析AI决策系统在生死抉择中的道德困境。我们将剖析自动驾驶的伦理框架设计原则,探讨技术实现方案,并通过代码示例展示伦理算法如何嵌入自动驾驶系统。文章还将讨论法律责任划分、社会接受度等现实问题,最
- 智能汽车图像及视频处理方案,支持视频智能包装创作能力
美摄科技
汽车
在这个日新月异的智能时代,每一帧画面都承载着超越想象的力量。随着自动驾驶技术的飞速发展,智能汽车不仅成为了未来出行的代名词,更是技术与艺术完美融合的典范。在这场变革的浪潮中,美摄科技以创新为翼,推出了领先的智能汽车图像及视频处理方案,为智能汽车行业带来了前所未有的视觉盛宴,重新定义了智能出行的视觉体验。一、智能重塑,视觉新境界美摄科技的智能汽车图像及视频处理方案,是基于深度学习、人工智能及大数据处
- 降低20%成本暴雨定制化液冷系统落地
暴雨信息凭借多年液冷设计及实施经验,帮助某知名自动驾驶企业完成了车端算力设备和后端数据中心的液冷改造升级,进一步提升了其车端实时数据处理能力及后端模型训练优化效率。但在后期持续运维过程中,由于测试中心尚未配备液冷系统,只能依赖外接散热器和水泵来进行液冷设备的测试与故障排除,不仅噪音大还存在较大的冷却液泄漏风险。为此,客户期望我们帮助其建立起一套规范化的液冷测试系统,以解决当下困境。暴雨信息专业技术
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- 计算机视觉实战:OpenCV 与深度学习结合
QuantumWalker
计算机视觉opencv深度学习python
```html计算机视觉实战:OpenCV与深度学习结合计算机视觉实战:OpenCV与深度学习结合在当今数字化时代,计算机视觉技术已经渗透到我们生活的方方面面。从智能手机的面部识别解锁,到自动驾驶汽车的环境感知,计算机视觉正在改变我们的世界。而在这个领域中,OpenCV和深度学习的结合,更是推动了计算机视觉技术的发展。什么是OpenCV?OpenCV(OpenSourceComputerVisio
- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 特斯拉及新能源车企笔试面试题型解析上-21期
启芯硬件笔记
经验分享PCBEMI硬件工程面试职场和发展
本专栏预计更新90期左右。当前第21期-特斯拉硬件.特斯拉作为全球领先的电动汽车、能源存储和人工智能公司,其硬件工程师岗位的招聘通常包括笔试和多轮技术面试,考察领域涵盖数字电路设计、模拟电路、嵌入式系统、电动车技术和自动驾驶等。由于特斯拉的创新性和技术领先地位,其面试问题可能更加注重实际应用和问题解决能力。笔试通常旨在考察候选人的基础理论知识、问题分析能力、电路设计与调试经验、以及对相关工具和方法
- 特斯拉及新能源车企笔试面试题型解析下
启芯硬件笔记
经验分享硬件工程嵌入式硬件技术提升面试职场和发展
特斯拉及新能源车企笔试面试题型解析下本专栏预计更新90期左右。当前第22期-特斯拉硬件.由于特斯拉的招聘信息保密,本文根据公开的特斯拉硬件工程师面试经验、招聘需求以及行业通用技术领域,并提供详细的题目解析思路和方法,以期为准备特斯拉硬件工程师职位的候选人提供有价值的参考、总结、和经验分享,结合特斯拉的电动汽车和自动驾驶技术特点,给出可能涉及的题目,并提供详细解析。随着技术的飞速发展和特斯拉业务的不
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc