并行通信是指数据的各个位用多条数据线同时进行传输
优点:传输速度快
缺点:占用引脚资源多
串行通信是将数据分成一位一位的形式在一条传输线上逐个传输
优点:通信线路简单、占用引脚资源少
缺点:传输速度慢
同步通信:带时钟同步信号的数据传输;发送方和接收方在同一时钟的控制下,同步传输数据。
异步通信:不带时钟同步信号的数据传输。发送方与接收方使用各自的时钟控制数据的发送和接收过程。
串行通信的传输方向:
单工 :数据只能沿一个方向传输
半双工:数据传输可以沿两个方向,但需要分时进行
全双工:数据可以同时进行双向传输
下面是常见的串行通信接口
UART (universal asynchronous receiver-transmitter) 是一种采用异步串行通信方式的通用异步收发传输器。它在发送数据时将并行数据转换成串行数据来传输,在接收数据时将接收到的串行数据转换成并行数据。协议层: 通信协议(包括数据格式、传输速率等) 物理层:接口类型、电平标准等。
UART串口通信需要两根信号线来实现,一根用于串口发送,另外一根负责串口接收。
串口通信的速率用波特率表示,它表示每秒传输二进制数据的位数,单位是bps(位/秒) 常用的波特率有9600、19200、38400、57600以及115200等。
针对异步串行通信的接口标准有RS23、RS422、RS485等
1.通信实验:开发板与上位机通过串口通信,完成数据环回实验
2.程序设计:
首先是分频时钟,用pll去设计ip核,输入时钟是50MHZ,输出一个时钟为1MHz,用于仿真。
具体ip核设计可以去看前面一篇文章:pll锁相环(可以根据系统时钟进行倍频、分频、相位偏移等等,而普通的计数器只能分频)_小泡芙❤的博客-CSDN博客
module uart_recv(
input sys_clk, //系统时钟
input sys_rst_n, //系统复位,低电平有效
input uart_rxd, //UART接收端口
output reg uart_done, //接收一帧数据完成标志信号
output reg [7:0] uart_data //接收的数据
);
//parameter define
parameter CLK_FREQ = 50000000; //系统时钟频率
parameter UART_BPS = 9600; //串口波特率
localparam BPS_CNT = CLK_FREQ/UART_BPS; //为得到指定波特率,
//需要对系统时钟计数BPS_CNT次
//reg define
reg uart_rxd_d0;
reg uart_rxd_d1;
reg [15:0] clk_cnt; //系统时钟计数器
reg [ 3:0] rx_cnt; //接收数据计数器
reg rx_flag; //接收过程标志信号
reg [ 7:0] rxdata; //接收数据寄存器
//wire define
wire start_flag;
//*****************************************************
//** main code
//*****************************************************
//捕获接收端口下降沿(起始位),得到一个时钟周期的脉冲信号
assign start_flag = uart_rxd_d1 & (~uart_rxd_d0);
//对UART接收端口的数据延迟两个时钟周期
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_rxd_d0 <= 1'b0;
uart_rxd_d1 <= 1'b0;
end
else begin
uart_rxd_d0 <= uart_rxd;
uart_rxd_d1 <= uart_rxd_d0;
end
end
//当脉冲信号start_flag到达时,进入接收过程
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
rx_flag <= 1'b0;
else begin
if(start_flag) //检测到起始位
rx_flag <= 1'b1; //进入接收过程,标志位rx_flag拉高
else if((rx_cnt == 4'd9)&&(clk_cnt == BPS_CNT/2))
rx_flag <= 1'b0; //计数到停止位中间时,停止接收过程
else
rx_flag <= rx_flag;
end
end
//进入接收过程后,启动系统时钟计数器与接收数据计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
clk_cnt <= 16'd0;
rx_cnt <= 4'd0;
end
else if ( rx_flag ) begin //处于接收过程
if (clk_cnt < BPS_CNT - 1) begin
clk_cnt <= clk_cnt + 1'b1;
rx_cnt <= rx_cnt;
end
else begin
clk_cnt <= 16'd0; //对系统时钟计数达一个波特率周期后清零
rx_cnt <= rx_cnt + 1'b1; //此时接收数据计数器加1
end
end
else begin //接收过程结束,计数器清零
clk_cnt <= 16'd0;
rx_cnt <= 4'd0;
end
end
//根据接收数据计数器来寄存uart接收端口数据
always @(posedge sys_clk or negedge sys_rst_n) begin
if ( !sys_rst_n)
rxdata <= 8'd0;
else if(rx_flag) //系统处于接收过程
if (clk_cnt == BPS_CNT/2) begin //判断系统时钟计数器计数到数据位中间
case ( rx_cnt )
4'd1 : rxdata[0] <= uart_rxd_d1; //寄存数据位最低位
4'd2 : rxdata[1] <= uart_rxd_d1;
4'd3 : rxdata[2] <= uart_rxd_d1;
4'd4 : rxdata[3] <= uart_rxd_d1;
4'd5 : rxdata[4] <= uart_rxd_d1;
4'd6 : rxdata[5] <= uart_rxd_d1;
4'd7 : rxdata[6] <= uart_rxd_d1;
4'd8 : rxdata[7] <= uart_rxd_d1; //寄存数据位最高位
default:;
endcase
end
else
rxdata <= rxdata;
else
rxdata <= 8'd0;
end
//数据接收完毕后给出标志信号并寄存输出接收到的数据
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_data <= 8'd0;
uart_done <= 1'b0;
end
else if(rx_cnt == 4'd9) begin //接收数据计数器计数到停止位时
uart_data <= rxdata; //寄存输出接收到的数据
uart_done <= 1'b1; //并将接收完成标志位拉高
end
else begin
uart_data <= 8'd0;
uart_done <= 1'b0;
end
end
endmodule
发送模块
module uart_send(
input sys_clk, //系统时钟
input sys_rst_n, //系统复位,低电平有效
input uart_en, //发送使能信号
input [7:0] uart_din, //待发送数据
output reg uart_txd //UART发送端口
);
//parameter define
parameter CLK_FREQ = 50000000; //系统时钟频率
parameter UART_BPS = 9600; //串口波特率
localparam BPS_CNT = CLK_FREQ/UART_BPS; //为得到指定波特率,对系统时钟计数BPS_CNT次
//reg define
reg uart_en_d0;
reg uart_en_d1;
reg [15:0] clk_cnt; //系统时钟计数器
reg [ 3:0] tx_cnt; //发送数据计数器
reg tx_flag; //发送过程标志信号
reg [ 7:0] tx_data; //寄存发送数据
//wire define
wire en_flag;
//*****************************************************
//** main code
//*****************************************************
//捕获uart_en上升沿,得到一个时钟周期的脉冲信号
assign en_flag = (~uart_en_d1) & uart_en_d0;
//对发送使能信号uart_en延迟两个时钟周期
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
uart_en_d0 <= 1'b0;
uart_en_d1 <= 1'b0;
end
else begin
uart_en_d0 <= uart_en;
uart_en_d1 <= uart_en_d0;
end
end
//当脉冲信号en_flag到达时,寄存待发送的数据,并进入发送过程
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
tx_flag <= 1'b0;
tx_data <= 8'd0;
end
else if (en_flag) begin //检测到发送使能上升沿
tx_flag <= 1'b1; //进入发送过程,标志位tx_flag拉高
tx_data <= uart_din; //寄存待发送的数据
end
else
if ((tx_cnt == 4'd9)&&(clk_cnt == BPS_CNT/2))
begin //计数到停止位中间时,停止发送过程
tx_flag <= 1'b0; //发送过程结束,标志位tx_flag拉低
tx_data <= 8'd0;
end
else begin
tx_flag <= tx_flag;
tx_data <= tx_data;
end
end
//进入发送过程后,启动系统时钟计数器与发送数据计数器
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
clk_cnt <= 16'd0;
tx_cnt <= 4'd0;
end
else if (tx_flag) begin //处于发送过程
if (clk_cnt < BPS_CNT - 1) begin
clk_cnt <= clk_cnt + 1'b1;
tx_cnt <= tx_cnt;
end
else begin
clk_cnt <= 16'd0; //对系统时钟计数达一个波特率周期后清零
tx_cnt <= tx_cnt + 1'b1; //此时发送数据计数器加1
end
end
else begin //发送过程结束
clk_cnt <= 16'd0;
tx_cnt <= 4'd0;
end
end
//根据发送数据计数器来给uart发送端口赋值
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n)
uart_txd <= 1'b1;
else if (tx_flag)
case(tx_cnt)
4'd0: uart_txd <= 1'b0; //起始位
4'd1: uart_txd <= tx_data[0]; //数据位最低位
4'd2: uart_txd <= tx_data[1];
4'd3: uart_txd <= tx_data[2];
4'd4: uart_txd <= tx_data[3];
4'd5: uart_txd <= tx_data[4];
4'd6: uart_txd <= tx_data[5];
4'd7: uart_txd <= tx_data[6];
4'd8: uart_txd <= tx_data[7]; //数据位最高位
4'd9: uart_txd <= 1'b1; //停止位
default: ;
endcase
else
uart_txd <= 1'b1; //空闲时发送端口为高电平
end
endmodule
顶层模块
module uart_top(
input sys_clk, //外部50M时钟
input sys_rst_n, //外部复位信号,低有效
//uart接口
input uart_rxd, //UART接收端口
output uart_txd //UART发送端口
);
//parameter define
parameter CLK_FREQ = 50000000; //定义系统时钟频率
parameter UART_BPS = 115200; //定义串口波特率
//wire define
wire uart_en_w; //UART发送使能
wire [7:0] uart_data_w; //UART发送数据
wire clk_1m_w; //1MHz时钟,用于仿真调试
//*****************************************************
//** main code
//*****************************************************
pll_clk u_pll( //时钟分频模块,用于调试
.inclk0 (sys_clk),
.c0 (clk_1m_w)
);
uart_recv #( //串口接收模块
.CLK_FREQ (CLK_FREQ), //设置系统时钟频率
.UART_BPS (UART_BPS)) //设置串口接收波特率
u_uart_recv(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_rxd (uart_rxd),
.uart_done (uart_en_w),
.uart_data (uart_data_w)
);
uart_send #( //串口发送模块
.CLK_FREQ (CLK_FREQ), //设置系统时钟频率
.UART_BPS (UART_BPS)) //设置串口发送波特率
u_uart_send(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_en (uart_en_w),
.uart_din (uart_data_w),
.uart_txd (uart_txd)
);
endmodule
仿真模块
`timescale 1 ns/ 1 ns
module uart_top_tb();
parameter T = 20;
reg sys_clk;
reg sys_rst_n;
reg uart_rxd;
wire uart_txd;
wire uart_en_w; //UART发送使能
wire [7:0] uart_data_w; //UART发送数据
wire clk_1m_w;
reg uart_en; //发送使能信号
reg [7:0] uart_din; //待发送数据
reg uart_done; //接收一帧数据完成标志信号
reg [7:0] uart_data;
initial
begin
sys_clk = 1'b0;
sys_rst_n = 1'b0;
uart_rxd = 1;
#200
sys_rst_n = 1'b1;
//模拟发送一帧数据
#200 uart_rxd = 0; //起始位
#110000 uart_rxd = 0;
#110000 uart_rxd = 1;
#110000 uart_rxd = 1;
#110000 uart_rxd = 0;
#110000 uart_rxd = 0;
#110000 uart_rxd = 1;
#110000 uart_rxd = 0;
#110000 uart_rxd = 1; //停止位
#1500000 $stop;
end
always #(T/2) sys_clk = ~sys_clk;
pll_clk u_pll( //时钟分频模块,用于调试
.inclk0 (sys_clk),
.c0 (clk_1m_w)
);
u_uart_recv(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_rxd (uart_rxd),
.uart_done (uart_en_w),
.uart_data (uart_data_w)
);
u_uart_send(
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n),
.uart_en (uart_en_w),
.uart_din (uart_data_w),
.uart_txd (uart_txd)
);
endmodule
rtl图: