C++ OpenCV透视变换综合练习

学更好的别人,

做更好的自己。

——《微卡智享》

本文长度为3879,预计阅读9分钟

前言

以前的文章《C++ OpenCV之透视变换》介绍过透视变换,当时主要是自己固定的变换坐标点,所以在想可不可以做一个通过轮廓检测后自适应的透视变换,实现的思路通过检测主体的轮廓,使用外接矩形和多边形拟合的四个最边的点进行透视变换。

实现效果

C++ OpenCV透视变换综合练习_第1张图片

# 实现思路
1 图像灰度图,高斯滤波、二值化
2 形态学开操作,Canny边缘检测
3 查找轮廓,遍历轮廓判断周长大于图像宽度的进行多边形拟合
4
判断拟合的点大于4个的获取到最小旋转矩形
5
通过多边形拟合的点计算出离最小旋转矩形最近的4个点
6
找到轮廓最小外接矩形作为透视变换的坐标
7
将5、6的步骤两个坐标点计算透视变换矩阵
8
透视变换

重点说明

微卡智享

01

排序旋转矩形的坐标点

C++ OpenCV透视变换综合练习_第2张图片

图片来自网络

获取旋转矩形的函数minAreaRect( )中,四个顶点中y值最大的顶点为p[0],p[0]围着center顺时针旋转,依次经过的顶点为p[1],p[2],p[3]。角度参数angle 是P[0]发出的平行于x轴的射线,逆时针旋转,与碰到的第一个边的夹角,取值范围[-90~0]。注:逆时针旋转角度为负。

在透视变换的4个顶点的顺序为左上,右上,右下,左下,所以根据上面的原理,我们要写一个4点的重新排序,把4个顶点的顺序按透视变换的需要修改过来。

//重新排序旋转矩形坐标点
void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect)
{
  rect.points(vetPoints);


  cout << vetPoints[0] << vetPoints[1] << vetPoints[2] << vetPoints[3] << endl;
  cout << rect.angle << endl;


  Point2f curpoint;
  //根据Rect的坐标点,Y轴最大的为P[0],p[0]围着center顺时针旋转, 
  //旋转角度为负的话即是P[0]在左下角,为正P[0]是右下角
    //重新排序坐标点
  if (rect.angle > 0) {
    curpoint = vetPoints[0];
    vetPoints[0] = vetPoints[2];
    vetPoints[2] = curpoint;
    curpoint = vetPoints[1];
    vetPoints[1] = vetPoints[3];
    vetPoints[3] = curpoint;
  }
  else if (rect.angle < 0) {
    curpoint = vetPoints[0];
    vetPoints[0] = vetPoints[1];
    vetPoints[1] = vetPoints[2];
    vetPoints[2] = vetPoints[3];
    vetPoints[3] = curpoint;
  }


}

02

计算多边形拟合需要透视变换的点

C++ OpenCV透视变换综合练习_第3张图片

通过多边形拟合出来的点比较多,而使用透视变换也是只要4个点,如果使用最小旋转矩形的4个点没有什么效果,如上图中红色是多边形拟合的点,蓝色框为最小旋转矩形的点,如果用这个点无法实现透视变换的效果,所以通过遍历了多边形拟合的点,计算每个点到最小旋转矩形的距离最近的4个点,形成了上图中的白色框,虽然不完美,但是可以透视变换的效果。

距离的计算用的是欧几里德距离,然后对比找到最近的4个点。



//根据最小矩形点找最近的四边形点
//第一参数为输出的点,第二个参数为矩形的4个点,第三个为多边形拟合的点 
void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector convex)
{
  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下
  float ltdist = 99999999.9f;  //左上的最大距离 
  float rtdist = 99999999.9f;  //右上的最大距离 
  float rbdist = 99999999.9f;  //右下的最大距离 
  float lbdist = 99999999.9f;  //左下的最大距离
  float curdist = 0.0f; //当前点的计算距离
  


  for (auto curpoint : convex) {
    //计算左上点的距离 
    curdist = CalcPointDistance(rectPoints[0], curpoint);
    if (curdist < ltdist) {
      ltdist = curdist;
      vetPoints[0] = curpoint;
    }
    //计算右上角的点距离
    curdist = CalcPointDistance(rectPoints[1], curpoint);
    if (curdist < rtdist) {
      rtdist = curdist;
      vetPoints[1] = curpoint;
    }
    //计算右下角点的距离
    curdist = CalcPointDistance(rectPoints[2], curpoint);
    if (curdist < rbdist) {
      rbdist = curdist;
      vetPoints[2] = curpoint;
    }
    //计算左下角点的距离
    curdist = CalcPointDistance(rectPoints[3], curpoint);
    if (curdist < lbdist) {
      lbdist = curdist;
      vetPoints[3] = curpoint;
    }
  }
}


//计算两点间的距离
float CalcPointDistance(Point2f point1, Point2f point2)
{
  //计算两个点的Point差值
  Point2f tmppoint = point1 - point2;
  //利用欧几里德距离计算H
  return sqrt(pow(tmppoint.x, 2) + pow(tmppoint.y, 2));
}

TIPS

距离计算时一开始用的是旋转矩形的中心点离多边形拟合按左上,右上,右下,左下的方向找最远的4个,但是在某些斜的角度比较厉害的时候,这个计算问题不小,所以后来改为离最小旋转矩形的点最近的来找了。按中心点找最远距离的函数代码没删,一并贴上来。

完整代码

#include
#include


using namespace std;
using namespace cv;


//根据中心点找四角最远的点
void GetRectPoints(Point2f vetPoints[], Point2f center, vector convex);
//根据最小矩形点找最近的四边形点
void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector convex);


//排序旋转矩形坐标点
void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect);
//计算距离
float CalcPointDistance(Point2f point1, Point2f point2);






int main(int argc, char** argv) {


  Mat src = imread("E:/DCIM/tsnew.jpg");
  Mat gray, dst, dst2, result;
  //图像缩放
  resize(src, gray, Size(0, 0), 0.2, 0.2);
  imshow("src", gray);


  //灰度图
  cvtColor(gray, dst, COLOR_BGRA2GRAY);


  //高斯滤波
  GaussianBlur(dst, dst, Size(3, 3), 0.5, 0.5);
  imshow("gray", dst);


  //二值化
  threshold(dst, dst2, 0, 255, THRESH_BINARY | THRESH_OTSU);
  imshow("thresh", dst2);


  //形态学开操作
  Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
  morphologyEx(dst2, dst2, MORPH_OPEN, kernel);
  imshow("morph", dst2);


  //Canny边缘检测
  Canny(dst2, result, 127, 255, 7, true);
  imshow("canny", result);


  //查找轮廓
  vector> contours;
  findContours(result, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);


  cout << contours.size() << endl;
  vector> contours_poly(contours.size());
  Mat tmpgray;
  gray.copyTo(tmpgray);
  for (int i = 0; i < contours.size(); ++i) {
    //计算轮廓周长,大于图像宽度的才算主体
    double dlen = arcLength(contours[i], true);
    if (dlen > gray.cols) {
      //多边形拟合
      approxPolyDP(Mat(contours[i]), contours_poly[i], 10, true);


      cout << "当前:" << i << " 点数:" << contours_poly[i].size() << endl;
      
      if (contours_poly[i].size() >= 4) {
        //获取最小旋转矩形
        RotatedRect rRect = minAreaRect(contours_poly[i]);
        Point2f vertices[4];
        //重新排序矩形坐标点,按左上,右上,右下,左下顺序
        SortRotatedRectPoints(vertices, rRect);


        cout << vertices[0] << vertices[1] << vertices[2] << vertices[3] << endl;


        //根据获得的4个点画线
        for (int k = 0; k < 4; ++k) {
          line(gray, vertices[k], vertices[(k + 1) % 4], Scalar(255, 0, 0));
        }


        //多边形拟合的画出轮廓
        drawContours(gray, contours_poly, i, Scalar(0, 0, 255));


        //计算四边形的四点坐标
        Point2f rPoints[4];
        //GetRectPoints(rPoints, rRect.center, contours_poly[i]);
        GetPointsFromRect(rPoints, vertices, contours_poly[i]);
        for (int k = 0; k < 4; ++k) {
          line(gray, rPoints[k], rPoints[(k + 1) % 4], Scalar(255, 255, 255));
        }




        //根据最小矩形和多边形拟合的最大四个点计算透视变换矩阵    
        //重新排序多边形拟合的4点
        Rect rect = rRect.boundingRect();
        rectangle(gray, rect, Scalar(0, 0, 0));


        Point2f rectPoint[4];
        rectPoint[0] = Point2f(rect.x, rect.y);
        rectPoint[1] = Point2f(rect.x + rect.width, rect.y);
        rectPoint[2] = Point2f(rect.x + rect.width, rect.y + rect.height);
        rectPoint[3] = Point2f(rect.x, rect.y + rect.height);
       
        //vector vecpt(vertices, vertices + 4);
        //GetRectPoints(vertices, rRect.center, vecpt);


        //计算透视变换矩阵    
        Mat warpmatrix = getPerspectiveTransform(rPoints, rectPoint);
        Mat resultimg;
                //透视变换
        warpPerspective(tmpgray, resultimg, warpmatrix, resultimg.size(), INTER_LINEAR);
        imshow("resultimg", resultimg);


      }
    }
  }
  imshow("src2", gray);


  waitKey(0);
  return 0;
}


//根据中心点找最远的四个点
void GetRectPoints(Point2f vetPoints[], Point2f center, vector convex)
{
  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下
  float ltdist = 0.0f;  //左上的最大距离 
  float rtdist = 0.0f;  //右上的最大距离 
  float rbdist = 0.0f;  //右下的最大距离 
  float lbdist = 0.0f;  //左下的最大距离


  for (auto curpoint : convex) {
    //计算点的距离 
    float curdist = CalcPointDistance(center, curpoint);


    if (curpoint.x < center.x && curpoint.y < center.y)
    {
      //判断是否在左上
      if (curdist > ltdist) {
        ltdist = curdist;
        vetPoints[0] = curpoint;
      }
    }
    else if (curpoint.x > center.x && curpoint.y < center.y) {
      //判断在右上
      if (curdist > rtdist) {
        rtdist = curdist;
        vetPoints[1] = curpoint;
      }
    }
    else if (curpoint.x > center.x && curpoint.y > center.y) {
      //判断在右下
      if (curdist > rbdist) {
        rbdist = curdist;
        vetPoints[2] = curpoint;
      }
    }
    else if (curpoint.x < center.x && curpoint.y > center.y) {
      //判断在左下
      if (curdist > lbdist) {
        lbdist = curdist;
        vetPoints[3] = curpoint;
      }
    }


  }
  
}


//根据最小矩形点找最近的四边形点
//第一参数为输出的点,第二个参数为矩形的4个点,第三个为多边形拟合的点 
void GetPointsFromRect(Point2f vetPoints[], Point2f rectPoints[], vector convex)
{
  //定义最远的4个点,0--左上, 1--右上, 2--右下  3--左下
  float ltdist = 99999999.9f;  //左上的最大距离 
  float rtdist = 99999999.9f;  //右上的最大距离 
  float rbdist = 99999999.9f;  //右下的最大距离 
  float lbdist = 99999999.9f;  //左下的最大距离
  float curdist = 0.0f; //当前点的计算距离
  


  for (auto curpoint : convex) {
    //计算左上点的距离 
    curdist = CalcPointDistance(rectPoints[0], curpoint);
    if (curdist < ltdist) {
      ltdist = curdist;
      vetPoints[0] = curpoint;
    }
    //计算右上角的点距离
    curdist = CalcPointDistance(rectPoints[1], curpoint);
    if (curdist < rtdist) {
      rtdist = curdist;
      vetPoints[1] = curpoint;
    }
    //计算右下角点的距离
    curdist = CalcPointDistance(rectPoints[2], curpoint);
    if (curdist < rbdist) {
      rbdist = curdist;
      vetPoints[2] = curpoint;
    }
    //计算左下角点的距离
    curdist = CalcPointDistance(rectPoints[3], curpoint);
    if (curdist < lbdist) {
      lbdist = curdist;
      vetPoints[3] = curpoint;
    }
  }
}


//重新排序旋转矩形坐标点
void SortRotatedRectPoints(Point2f vetPoints[], RotatedRect rect)
{
  rect.points(vetPoints);


  cout << vetPoints[0] << vetPoints[1] << vetPoints[2] << vetPoints[3] << endl;
  cout << rect.angle << endl;


  Point2f curpoint;
  //根据Rect的坐标点,Y轴最大的为P[0],p[0]围着center顺时针旋转, 
  //旋转角度为负的话即是P[0]在左下角,为正P[0]是右下角
    //重新排序坐标点
  if (rect.angle > 0) {
    curpoint = vetPoints[0];
    vetPoints[0] = vetPoints[2];
    vetPoints[2] = curpoint;
    curpoint = vetPoints[1];
    vetPoints[1] = vetPoints[3];
    vetPoints[3] = curpoint;
  }
  else if (rect.angle < 0) {
    curpoint = vetPoints[0];
    vetPoints[0] = vetPoints[1];
    vetPoints[1] = vetPoints[2];
    vetPoints[2] = vetPoints[3];
    vetPoints[3] = curpoint;
  }


}


//计算两点间的距离
float CalcPointDistance(Point2f point1, Point2f point2)
{
  //计算两个点的Point差值
  Point2f tmppoint = point1 - point2;
  //利用欧几里德距离计算H
  return sqrt(pow(tmppoint.x, 2) + pow(tmppoint.y, 2));
}


C++ OpenCV透视变换综合练习_第4张图片

扫描二维码

获取更多精彩

微卡智享

「 往期文章 」

.Net5 Windows Form App中Linq的分组查询使用

Android CameraX NDK OpenCV(四)-- 二维码检测与识别

.Net5下定时任务Quartz的使用

你可能感兴趣的:(opencv,cv,3d,twitter,sms)