FastestDet调用源码

#include 
#include 

#include "net.h"
#include "benchmark.h"
#include 

float Sigmoid(float x)
{
    return 1.0f / (1.0f + exp(-x));
}

float Tanh(float x)
{
    return 2.0f / (1.0f + exp(-2 * x)) - 1;
}

class TargetBox
{
private:
    float GetWidth() { return (x2 - x1); };
    float GetHeight() { return (y2 - y1); };

public:
    int x1;
    int y1;
    int x2;
    int y2;

    int category;
    float score;

    float area() { return GetWidth() * GetHeight(); };
};

float IntersectionArea(const TargetBox &a, const TargetBox &b)
{
    if (a.x1 > b.x2 || a.x2 < b.x1 || a.y1 > b.y2 || a.y2 < b.y1)
    {
        // no intersection
        return 0.f;
    }

    float inter_width = std::min(a.x2, b.x2) - std::max(a.x1, b.x1);
    float inter_height = std::min(a.y2, b.y2) - std::max(a.y1, b.y1);

    return inter_width * inter_height;
}

bool scoreSort(TargetBox a, TargetBox b) 
{ 
    return (a.score > b.score); 
}

//NMS处理
int nmsHandle(std::vector &src_boxes, std::vector &dst_boxes)
{
    std::vector picked;
    
    sort(src_boxes.begin(), src_boxes.end(), scoreSort);

    for (int i = 0; i < src_boxes.size(); i++) 
    {
        int keep = 1;
        for (int j = 0; j < picked.size(); j++) 
        {
            //交集
            float inter_area = IntersectionArea(src_boxes[i], src_boxes[picked[j]]);
            //并集
            float union_area = src_boxes[i].area() + src_boxes[picked[j]].area() - inter_area;
            float IoU = inter_area / union_area;

            if(IoU > 0.45 && src_boxes[i].category == src_boxes[picked[j]].category) 
            {
                keep = 0;
                break;
            }
        }

        if (keep) {
            picked.push_back(i);
        }
    }
    
    for (int i = 0; i < picked.size(); i++) 
    {
        dst_boxes.push_back(src_boxes[picked[i]]);
    }

    return 0;
}

int main()
{
    // 类别标签
    static const char* class_names[] = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"
    };
    // 类别数量
    int class_num = sizeof(class_names) / sizeof(class_names[0]);

    // 阈值
    float thresh = 0.65;

    // 模型输入宽高
    int input_width = 352;
    int input_height = 352;

    // 加载模型
    ncnn::Net net;
    net.load_param("FastestDet.param");
    net.load_model("FastestDet.bin");  
    printf("ncnn model load sucess...\n");

    // 加载图片
    cv::Mat img = cv::imread("3.jpg");
    int img_width = img.cols;
    int img_height = img.rows;

    // resize of input image data
    ncnn::Mat input = ncnn::Mat::from_pixels_resize(img.data, ncnn::Mat::PIXEL_BGR,\
                                                    img.cols, img.rows, input_width, input_height); 
    // Normalization of input image data
    const float mean_vals[3] = {0.f, 0.f, 0.f};
    const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
    input.substract_mean_normalize(mean_vals, norm_vals); 

    // creat extractor
    ncnn::Extractor ex = net.create_extractor();
    ex.set_num_threads(1);

    double start = ncnn::get_current_time();
    //set input tensor
    ex.input("input.1", input);

    // get output tensor
    ncnn::Mat output; 
    ex.extract("758", output); 
    printf("output: %d, %d, %d\n", output.c, output.h, output.w);

    // handle output tensor
    std::vector target_boxes;

    for (int h = 0; h < output.h; h++)
    {
        for (int w = 0; w < output.h; w++)
        {   
            // 前景概率
            int obj_score_index = (0 * output.h * output.w) + (h * output.w) + w;
            float obj_score = output[obj_score_index];

            // 解析类别
            int category;
            float max_score = 0.0f;
            for (size_t i = 0; i < class_num; i++)
            {
                int obj_score_index = ((5 + i) * output.h * output.w) + (h * output.w) + w;
                float cls_score = output[obj_score_index];
                if (cls_score > max_score)
                {
                    max_score = cls_score;
                    category = i;
                }
            }
            float score = pow(max_score, 0.4) * pow(obj_score, 0.6);

            // 阈值筛选
            if(score > thresh) 
            {
                // 解析坐标
                int x_offset_index = (1 * output.h * output.w) + (h * output.w) + w;
                int y_offset_index = (2 * output.h * output.w) + (h * output.w) + w;
                int box_width_index = (3 * output.h * output.w) + (h * output.w) + w;
                int box_height_index = (4 * output.h * output.w) + (h * output.w) + w;    

                float x_offset = Tanh(output[x_offset_index]);
                float y_offset = Tanh(output[y_offset_index]);
                float box_width = Sigmoid(output[box_width_index]);
                float box_height = Sigmoid(output[box_height_index]);        

                float cx = (w + x_offset) / output.w;
                float cy = (h + y_offset) / output.h;

                int x1 = (int)((cx - box_width * 0.5) * img_width);
                int y1 = (int)((cy - box_height * 0.5) * img_height);
                int x2 = (int)((cx + box_width * 0.5) * img_width);
                int y2 = (int)((cy + box_height * 0.5) * img_height);
                
                target_boxes.push_back(TargetBox{x1, y1, x2, y2, category, score});
            }
        }
    }

    // NMS处理
    std::vector nms_boxes;
    nmsHandle(target_boxes, nms_boxes);

    // 打印耗时
    double end = ncnn::get_current_time();
    double time = end - start;
    printf("Time:%7.2f ms\n",time);

    // draw result
    for (size_t i = 0; i < nms_boxes.size(); i++)
    {
        TargetBox box = nms_boxes[i];
        printf("x1:%d y1:%d x2:%d y2:%d  %s:%.2f%%\n", box.x1, box.y1, box.x2, box.y2, class_names[box.category], box.score * 100);

        cv::rectangle(img, cv::Point(box.x1, box.y1), cv::Point(box.x2, box.y2), cv::Scalar(0, 0, 255), 2);
        cv::putText(img, class_names[box.category], cv::Point(box.x1, box.y1), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 255, 0), 2);
    }
    
    cv::imwrite("result.jpg", img);
    
    return 0;
}

你可能感兴趣的:(代码分享,算法,c++,开发语言)