NNDL 实验六 卷积神经网络(3)LeNet实现MNIST

目录

5.3 基于LeNet实现手写体数字识别实验

5.3.1 MNIST数据集

 5.3.1.1 数据预处理

5.3.2 模型构建

5.3.5 模型预测

5.3.4 模型评价 

5.3.5 模型预测

选做 

使用前馈神经网络实现MNIST识别,与LeNet效果对比。

总结 

参考:


5.3 基于LeNet实现手写体数字识别实验

5.3.1 MNIST数据集

        在本节中,我们实现经典卷积网络LeNet-5,并进行手写体数字识别任务。
        手写体数字识别是计算机视觉中最常用的图像分类任务,让计算机识别出给定图片中的手写体数字(0-9共10个数字)。由于手写体风格差异很大,因此手写体数字识别是具有一定难度的任务。

我们采用常用的手写数字识别数据集:MNIST数据集。MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28 × 28 像素)。下图给出了部分样本的示例。
NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_第1张图片

为了节省训练时间,本节选取MNIST数据集的一个子集进行后续实验,数据集的划分为:

  • 训练集:1,000条样本
  • 验证集:200条样本
  • 测试集:200条样本

MNIST数据集分为train_set、dev_set和test_set三个数据集,每个数据集含两个列表分别存放了图片数据以及标签数据。比如train_set包含:

  • 图片数据:[1 000, 784]的二维列表,包含1 000张图片。每张图片用一个长度为784的向量表示,内容是 28×2828×28 尺寸的像素灰度值(黑白图片)。
  • 标签数据:[1 000, 1]的列表,表示这些图片对应的分类标签,即0~9之间的数字。

观察数据集分布情况,代码实现如下:

import json
import gzip

# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))

运行结果:

Length of train/dev/test set:1000/200/200 

 可视化观察其中的一张样本以及对应的标签,这里我选的是索引值为9的照片,真实值为4,代码如下所示:

import numpy as np
import matplotlib.pyplot as plt
import PIL.Image as Image

img, label = train_set[0][9], train_set[1][9]
img, label = np.array(img).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
img = np.reshape(img, [28, 28])
img = Image.fromarray(img.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(img)
plt.show()
plt.savefig('conv-number4.pdf')

运行结果: 

 NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_第2张图片

 5.3.1.1 数据预处理

图像分类网络对输入图片的格式、大小有一定的要求,数据输入模型前,需要对数据进行预处理操作,使图片满足网络训练以及预测的需要。本实验主要应用了如下方法:

调整图片大小:LeNet网络对输入图片大小的要求为 32 × 32 ,而MNIST数据集中的原始图片大小却是 28 × 28 ,这里为了符合网络的结构设计,将其调整为32 × 32;


规范化: 通过规范化手段,把输入图像的分布改变成均值为0,标准差为1的标准正态分布,使得最优解的寻优过程明显会变得平缓,训练过程更容易收敛。


代码实现如下:

import torchvision.transforms as transforms

# 数据预处理
transforms = transforms.Compose(
    [transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5])])


from torch.utils.data import Dataset


class MNIST_dataset(Dataset):
    def __init__(self, dataset, transforms, mode='train'):
        self.mode = mode
        self.transforms = transforms
        self.dataset = dataset

    def __getitem__(self, idx):
        # 获取图像和标签
        image, label = self.dataset[0][idx], self.dataset[1][idx]
        image, label = np.array(image).astype('float32'), int(label)
        image = np.reshape(image, [28, 28])
        image = Image.fromarray(np.unit8(image), mode='L')
        image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.dataset[0])


# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')

5.3.2 模型构建

LeNet-5虽然提出的时间比较早,但它是一个非常成功的神经网络模型。基于LeNet-5的手写数字识别系统在20世纪90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5的网络结构如下图所示。

NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_第3张图片

这里的LeNet-5和原始版本有4点不同:

  1. C3层没有使用连接表来减少卷积数量。
  2. 汇聚层使用了简单的平均汇聚,没有引入权重和偏置参数以及非线性激活函数。
  3. 卷积层的激活函数使用ReLU函数。
  4. 最后的输出层为一个全连接线性层。

网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为32 × 32 = 1024,输出对应10个类别的得分。具体实现如下:

import torch.nn.functional as F
import torch.nn as nn


class Model_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Model_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5×5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(120, 84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(84, num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数

        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

 下面测试一下上面的LeNet-5模型,构造一个形状为 [1,1,32,32]的输入数据送入网络,观察每一层特征图的形状变化。代码实现如下:

class Torch_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Torch_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(in_features=120, out_features=84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(in_features=84, out_features=num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

 下面测试一下上面的LeNet-5模型,构造一个形状为 [1,1,32,32]的输入数据送入网络,观察每一层特征图的形状变化。代码实现如下:

 
# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
print(model)
# 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层
print(model.named_parameters())
x = torch.tensor(inputs)
print(x)
for item in model.children():
    # item是LeNet类中的一个子层
    # 查看经过子层之后的输出数据形状
    item_shapex = 0
    names = []
    parameter = []
    for name in item.named_parameters():
        names.append(name[0])
        parameter.append(name[1])
        item_shapex += 1
    try:
        x = item(x)
    except:
        # 如果是最后一个卷积层输出,需要展平后才可以送入全连接层
        x = x.reshape([x.shape[0], -1])
        x = item(x)
 
    if item_shapex == 2:
        # 查看卷积和全连接层的数据和参数的形状,
        # 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
        print(item, x.shape, parameter[0].shape, parameter[1].shape)
    else:
        # 汇聚层没有参数
        print(item, x.shape)

 运行结果:

Length of train/dev/test set:1000/200/200

The number in the picture is 3

Model_LeNet(

  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

  (pool2): MaxPool2d(kernel_size=(2, 2), stride=2, padding=0, dilation=1, ceil_mode=False)

  (conv3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

  (pool4): AvgPool2d(kernel_size=(2, 2), stride=2, padding=0)

  (conv5): Conv2d(16, 120, kernel_size=(5, 5), stride=(1, 1))

  (linear6): Linear(in_features=120, out_features=84, bias=True)

  (linear7): Linear(in_features=84, out_features=10, bias=True)

)

tensor([[[[ 2.2872e+00,  2.5909e-01, -7.3315e-01,  ...,  9.8182e-01,

           -5.6555e-01, -1.3480e+00],

          [-1.0333e+00, -4.0936e-01,  2.1097e-01,  ...,  6.3379e-01,

            1.2221e+00,  1.2943e+00],

          [-1.9701e-01,  5.3759e-01,  9.5780e-02,  ..., -3.2455e-01,

           -1.4870e+00,  6.3696e-01],

          ...,

          [-9.7722e-01,  1.2465e+00,  3.1143e-02,  ...,  9.2502e-01,

           -1.0147e+00,  1.3323e+00],

          [-1.5388e+00, -3.0364e+00,  1.1936e+00,  ...,  4.0109e-01,

           -4.0882e-01,  8.4390e-01],

          [-2.3155e-01, -6.5325e-01, -4.3401e-01,  ...,  1.7663e+00,

            2.6898e+00, -2.6486e-03]]]])

Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) torch.Size([1, 6, 28, 28]) torch.Size([6, 1, 5, 5]) torch.Size([6])

MaxPool2d(kernel_size=(2, 2), stride=2, padding=0, dilation=1, ceil_mode=False) torch.Size([1, 6, 14, 14])

Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) torch.Size([1, 16, 10, 10]) torch.Size([16, 6, 5, 5]) torch.Size([16])

AvgPool2d(kernel_size=(2, 2), stride=2, padding=0) torch.Size([1, 16, 5, 5])

Conv2d(16, 120, kernel_size=(5, 5), stride=(1, 1)) torch.Size([1, 120, 1, 1]) torch.Size([120, 16, 5, 5]) torch.Size([120])

Linear(in_features=120, out_features=84, bias=True) torch.Size([1, 84]) torch.Size([84, 120]) torch.Size([84])

Linear(in_features=84, out_features=10, bias=True) torch.Size([1, 10]) torch.Size([10, 84]) torch.Size([10])

 从输出结果看,

  • 对于大小为32×32的单通道图像,先用6个大小为5×5的卷积核对其进行卷积运算,输出为6个28×28大小的特征图;
  • 6个28×28大小的特征图经过大小为2×2,步长为2的汇聚层后,输出特征图的大小变为14×1414×14;
  • 6个14×14大小的特征图再经过16个大小为5×5的卷积核对其进行卷积运算,得到16个10×10大小的输出特征图;
  • 16个10×10大小的特征图经过大小为2×2,步长为2的汇聚层后,输出特征图的大小变为5×5;
  • 16个5×5大小的特征图再经过120个大小为5×5的卷积核对其进行卷积运算,得到120个1×1大小的输出特征图;
  • 此时,将特征图展平成1维,则有120个像素点,经过输入神经元个数为120,输出神经元个数为84的全连接层后,输出的长度变为84。
  • 再经过一个全连接层的计算,最终得到了长度为类别数的输出结果。

考虑到自定义的Conv2D和Pool2D算子中包含多个for循环,所以运算速度比较慢。pytorch中,针对卷积层算子和汇聚层算子进行了速度上的优化,这里基于torch.nn.Conv2d();torch.nn.MaxPool2d();torch.nn.avg_pool2d()构建LeNet-5模型,对比与上边实现的模型的运算速度。代码实现如下:
 

class Torch_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Torch_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(in_features=120, out_features=84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
 
    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

 测试两个网络的运算速度。

import time
 
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
 
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
 
# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
    strat_time = time.time()
    out = model(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')
# 计算Torch_LeNet类的运算速度
torch_model_time = 0
for i in range(60):
    strat_time = time.time()
    torch_out = torch_model(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    torch_model_time += (end_time - strat_time)
avg_torch_model_time = torch_model_time / 50
 
print('Torch_LeNet speed:', avg_torch_model_time, 's')

运行结果

Model_LeNet speed: 0.0003124380111694336 s

Torch_LeNet speed: 0.0003123950958251953 s

 这里还可以令两个网络加载同样的权重,测试一下两个网络的输出结果是否一致。

# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
 
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 获取网络的权重
params = model.state_dict()
# 自定义Conv2D算子的bias参数形状为[out_channels, 1]
# torch API中Conv2D算子的bias参数形状为[out_channels]
# 需要进行调整后才可以赋值
for key in params:
    if 'bias' in key:
        params[key] = params[key].squeeze()
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 将Model_LeNet的权重参数赋予给Torch_LeNet模型,保持两者一致
torch_model.load_state_dict(params)
 
# 打印结果保留小数点后6位
torch.set_printoptions(6)
# 计算Model_LeNet的结果
output = model(x)
print('Model_LeNet output: ', output)
# 计算Torch_LeNet的结果
torch_output = torch_model(x)
print('Torch_LeNet output: ', torch_output)

运行结果

Model_LeNet output:  tensor([[-0.026712,  0.084623,  0.079348, -0.104063,  0.099383,  0.110550,0.055438, -0.022714,  0.066782, -0.001770]],grad_fn=)

Torch_LeNet output:  tensor([[-0.026712,  0.084623,  0.079348, -0.104063,  0.099383,  0.110550,0.055438, -0.022714,  0.066782, -0.001770]],grad_fn=)

可以看到,输出结果是一致的。

这里还可以统计一下LeNet-5模型的参数量和计算量。

参数量

按照公式(5.18)进行计算,可以得到:

  • 第一个卷积层的参数量为:6×1×5×5+6=1566×1×5×5+6=156;
  • 第二个卷积层的参数量为:16×6×5×5+16=241616×6×5×5+16=2416;
  • 第三个卷积层的参数量为:120×16×5×5+120=48120120×16×5×5+120=48120;
  • 第一个全连接层的参数量为:120×84+84=10164120×84+84=10164;
  • 第二个全连接层的参数量为:84×10+10=85084×10+10=850;

所以,LeNet-5总的参数量为6170661706。

在pytorch中,还可以使用torchsummaryAPI自动计算参数量。

from torchsummary import summary
model = Torch_LeNet(in_channels=1, num_classes=10)
params_info = summary(model, (1, 32, 32))
print(params_info)

运行结果

----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1            [-1, 6, 28, 28]             156

         MaxPool2d-2            [-1, 6, 14, 14]               0

            Conv2d-3           [-1, 16, 10, 10]           2,416

         AvgPool2d-4             [-1, 16, 5, 5]               0

            Conv2d-5            [-1, 120, 1, 1]          48,120

            Linear-6                   [-1, 84]          10,164

            Linear-7                   [-1, 10]             850

================================================================

Total params: 61,706

Trainable params: 61,706

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.00

Forward/backward pass size (MB): 0.06

Params size (MB): 0.24

Estimated Total Size (MB): 0.30

----------------------------------------------------------------

None

  可以看到,结果与公推导一致。

计算量

按照公式(5.19)进行计算,可以得到:

  • 第一个卷积层的计算量为:28×28×5×5×6×1+28×28×6=122304;
  • 第二个卷积层的计算量为:10×10×5×5×16×6+10×10×16=241600;
  • 第三个卷积层的计算量为:1×1×5×5×120×16+1×1×120=48120;
  • 平均汇聚层的计算量为:16×5×5=400;
  • 第一个全连接层的计算量为:120×84=10080;
  • 第二个全连接层的计算量为:84×10=840;
     

所以,LeNet-5总的计算量为423344。

在torch中,还可以使用torchstatAPI自动统计计算量。

5.3.5 模型预测

使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。
用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。

class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标
 
        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []
 
        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []
 
        # 记录全局最优指标
        self.best_score = 0
 
    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()
 
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)
 
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
 
        custom_print_log = kwargs.get("custom_print_log", None)
 
        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)
 
        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')
 
        # 运行的step数目
        global_step = 0
 
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                loss = self.loss_fn(logits, y)  # 默认求mean
                total_loss += loss
 
                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))
 
                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")
 
                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()
 
                if custom_print_log:
                    custom_print_log(self)
 
                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                optimizer.zero_grad()
 
                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):
 
                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")
 
                    # 将模型切换为训练模式
                    self.model.train()
 
                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score
 
                global_step += 1
 
            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)
 
        print("[Train] Training done!")
 
    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None
 
        # 将模型设置为评估模式
        self.model.eval()
 
        global_step = kwargs.get("global_step", -1)
 
        # 用于统计训练集的损失
        total_loss = 0
 
        # 重置评价
        self.metric.reset()
 
        # 遍历验证集每个批次
        for batch_id, data in enumerate(dev_loader):
            X, y = data
 
            # 计算模型输出
            logits = self.model(X)
 
            # 计算损失函数
            loss = self.loss_fn(logits, y).item()
            # 累积损失
            total_loss += loss
 
            # 累积评价
            self.metric.update(logits, y)
 
        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()
 
        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)
 
        return dev_score, dev_loss
 
    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x)
        return logits
 
    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)
 
    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)
import torch
#新增准确率计算函数
def accuracy(preds, labels):
    """
    输入:
        - preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        - labels:真实标签,shape=[N, 1]
    输出:
        - 准确率:shape=[1]
    """
    print(preds)
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.can_cast'将preds的数据类型转换为float32类型
        preds = torch.can_cast((preds>=0.5).dtype,to=torch.float32)
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds,dim=1)
        torch.can_cast(preds.dtype,torch.int32)
    return torch.mean(torch.tensor((preds == labels), dtype=torch.float32))
 
 
class Accuracy():
    def __init__(self):
        """
        输入:
           - is_logist: outputs是logist还是激活后的值
        """
 
        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0
 
        self.is_logist = True
 
    def update(self, outputs, labels):
        """
        输入:
           - outputs: 预测值, shape=[N,class_num]
           - labels: 标签值, shape=[N,1]
        """
 
        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1: # 二分类
            outputs = torch.squeeze(outputs, axis=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.can_cast((outputs>=0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.can_cast((outputs>=0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'paddle.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1).int()
 
        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum((preds == labels).clone().detach()).numpy()
        batch_count = len(labels)
 
        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count
 
    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count
 
    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0
 
    def name(self):
        return "Accuracy"
 
 
import torch.optim as opti
from torch.utils.data import DataLoader
torch.manual_seed(100)
# 学习率大小
lr = 0.1
# 批次大小
batch_size = 64
# 加载数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
model = Model_LeNet(in_channels=1, num_classes=10)
optimizer = opti.SGD(model.parameters(), 0.2)
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy()
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=6, log_steps=log_steps,
             eval_steps=eval_steps, save_path="best_model.pdparams")

 运行结果

[Train] epoch: 0/6, step: 0/96, loss: 2.31005

[Train] epoch: 0/6, step: 15/96, loss: 2.30053

[Evaluate]  dev score: 0.10000, dev loss: 2.29804

[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.10000

[Train] epoch: 1/6, step: 30/96, loss: 2.19406

[Evaluate]  dev score: 0.20000, dev loss: 2.22632

[Evaluate] best accuracy performence has been updated: 0.10000 --> 0.20000

[Train] epoch: 2/6, step: 45/96, loss: 1.90754

[Evaluate]  dev score: 0.20500, dev loss: 2.09735

[Evaluate] best accuracy performence has been updated: 0.20000 --> 0.20500

[Train] epoch: 3/6, step: 60/96, loss: 1.39710

[Evaluate]  dev score: 0.54500, dev loss: 1.20112

[Evaluate] best accuracy performence has been updated: 0.20500 --> 0.54500

[Train] epoch: 4/6, step: 75/96, loss: 1.01853

[Evaluate]  dev score: 0.66000, dev loss: 0.91668

[Evaluate] best accuracy performence has been updated: 0.54500 --> 0.66000

[Train] epoch: 5/6, step: 90/96, loss: 0.72001

[Evaluate]  dev score: 0.69000, dev loss: 0.89194

[Evaluate] best accuracy performence has been updated: 0.66000 --> 0.69000

[Evaluate]  dev score: 0.55500, dev loss: 1.11665

[Train] Training done!

可视化观察训练集与验证集的损失变化情况。

# 可视化误差
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
 
    plt.subplot(1, 2, 1)
    train_items = runner.train_step_losses[::30]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]
 
    plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")
    if runner.dev_losses[0][0] != -1:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='upper right', fontsize='x-large')
 
    plt.subplot(1, 2, 2)
    # 绘制评价准确率变化曲线
    if runner.dev_losses[0][0] != -1:
        plt.plot(dev_steps, runner.dev_scores,
                 color='#E20079', linestyle="--", label="Dev accuracy")
    else:
        plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores,
                 color='#E20079', linestyle="--", label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='lower right', fontsize='x-large')
 
    plt.savefig(fig_name)
    plt.show()
 
 
runner.load_model('best_model.pdparams')
plot(runner, 'cnn-loss1.pdf')

 运行结果

NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_第4张图片

5.3.4 模型评价 

使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失变化情况。

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

 运行结果

[Test] accuracy/loss: 0.8000/0.5851

5.3.5 模型预测

同样地,我们也可以使用保存好的模型,对测试集中的某一个数据进行模型预测,我选择的是数据集中索引为10的数字1,观察模型效果。 

# 获取测试集中第一条数
X, label = next(iter(test_loader))
logits = runner.predict(X)
# 多分类,使用softmax计算预测概率
pred = F.softmax(logits,dim=1)
print(pred.shape)
# 获取概率最大的类别
pred_class = torch.argmax(pred[2]).numpy()
print(pred_class)
label = label[2].numpy()
# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))
# 可视化图片
plt.figure(figsize=(2, 2))
image, label = test_set[0][10], test_set[1][10]
image= np.array(image).astype('float32')
image = np.reshape(image, [28, 28])
image = Image.fromarray(image.astype('uint8'), mode='L')
plt.imshow(image)
plt.savefig('cnn-number1.pdf')

运行结果

torch.Size([64, 10])

1

The true category is 1 and the predicted category is 1

选做 

使用前馈神经网络实现MNIST识别,与LeNet效果对比。

代码

import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
 
batch_size = 64
lr = 0.01
momentum = 0.5
epoch = 5
 
# 归一化
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# train=True训练集,=False测试集
train_dataset = datasets.MNIST(root='./pythonProject/mnist', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./pythonProject/mnist', train=False, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
 
fig = plt.figure()
for i in range(12):
    plt.subplot(3, 4, i + 1)
    plt.tight_layout()
    plt.imshow(train_dataset.train_data[i], cmap='gray', interpolation='none')
    plt.title("Labels: {}".format(train_dataset.train_labels[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()
 
 
# 定义前馈神经网络
class Model_MLP_L2_V3(nn.Module):
    def __init__(self):
        super(Model_MLP_L2_V3, self).__init__()
        self.conv1 = torch.nn.Sequential(torch.nn.Conv2d(1, 10, kernel_size=(5, 5)), torch.nn.ReLU(),
                                         torch.nn.MaxPool2d(kernel_size=2))
        self.conv2 = torch.nn.Sequential(torch.nn.Conv2d(10, 20, kernel_size=(5, 5)), torch.nn.ReLU(),
                                         torch.nn.MaxPool2d(kernel_size=2))
        self.fc = torch.nn.Sequential(torch.nn.Linear(320, 50), torch.nn.Linear(50, 10))
 
    def forward(self, x):
        batch_size = x.size(0)
        x = self.conv1(x)  # 一层卷积层,一层池化层,一层激活层
        x = self.conv2(x)
        x = x.view(batch_size, -1)  # flatten变成全连接网络需要的输入(batch, 20,4,4)==>(batch,320),-1此处自动算出的是320
        x = self.fc(x)
        return x
 
 
model = Model_MLP_L2_V3()
 
# 设置损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
 
 
def train(epoch):
    running_loss = 0.0  # 这整个epoch的loss清零
    running_total = 0
    running_correct = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
 
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
 
        loss.backward()
        optimizer.step()
 
        # 把运行中的loss累加起来,为了下面300次一除
        running_loss += loss.item()
        # 把运行中的准确率acc算出来
        _, predicted = torch.max(outputs.data, dim=1)
        running_total += inputs.shape[0]
        running_correct += (predicted == target).sum().item()
 
        if batch_idx % 100 == 99:
            print('[%d, %5d]: loss: %.3f , acc: %.2f %%' % (
            epoch + 1, batch_idx + 1, running_loss / 300, 100 * running_correct / running_total))
            running_loss = 0.0  # 该批次loss清零
            running_total = 0
            running_correct = 0  # 该批次acc清零
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # dim=1 列是第0个维度,行是第1个维度,沿着行(第1个维度)去找1.最大值和2.最大值的下标
            total += labels.size(0)  # 张量之间的比较运算
            correct += (predicted == labels).sum().item()
    accuracy = correct / total  # 测试准确率=正确数/总数
    print('[%d]: Accuracy on test set: %.1f %% ' % (epoch + 1, 100 * accuracy))
    return accuracy
 
 
# 主函数
if __name__ == '__main__':
    acc_list_test = []
    for epoch in range(epoch):
        train(epoch)
        acc_test = test()
        acc_list_test.append(acc_test)
 
    plt.plot(acc_list_test)
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.show()

运行结果

[1,   100]: loss: 0.528 , acc: 52.45 %
[1,   200]: loss: 0.154 , acc: 86.17 %
[1,   300]: loss: 0.111 , acc: 90.19 %
[1,   400]: loss: 0.090 , acc: 91.98 %
[1,   500]: loss: 0.076 , acc: 93.41 %
[1,   600]: loss: 0.066 , acc: 93.95 %
[1,   700]: loss: 0.054 , acc: 95.09 %
[1,   800]: loss: 0.049 , acc: 95.27 %
[1,   900]: loss: 0.047 , acc: 95.75 %
[1]: Accuracy on test set: 96.7 % 
[2,   100]: loss: 0.045 , acc: 96.16 %
[2,   200]: loss: 0.040 , acc: 96.17 %
[2,   300]: loss: 0.039 , acc: 96.44 %
[2,   400]: loss: 0.036 , acc: 96.53 %
[2,   500]: loss: 0.034 , acc: 96.81 %
[2,   600]: loss: 0.033 , acc: 96.98 %
[2,   700]: loss: 0.034 , acc: 96.92 %
[2,   800]: loss: 0.031 , acc: 97.30 %
[2,   900]: loss: 0.032 , acc: 97.09 %
[2]: Accuracy on test set: 97.7 % 
[3,   100]: loss: 0.028 , acc: 97.52 %
[3,   200]: loss: 0.028 , acc: 97.48 %
[3,   300]: loss: 0.027 , acc: 97.47 %
[3,   400]: loss: 0.031 , acc: 97.02 %
[3,   500]: loss: 0.025 , acc: 97.44 %
[3,   600]: loss: 0.028 , acc: 97.61 %
[3,   700]: loss: 0.027 , acc: 97.80 %
[3,   800]: loss: 0.026 , acc: 97.58 %
[3,   900]: loss: 0.021 , acc: 98.02 %
[3]: Accuracy on test set: 98.1 % 
[4,   100]: loss: 0.024 , acc: 97.86 %
[4,   200]: loss: 0.027 , acc: 97.70 %
[4,   300]: loss: 0.021 , acc: 97.97 %
[4,   400]: loss: 0.021 , acc: 98.03 %
[4,   500]: loss: 0.025 , acc: 97.92 %
[4,   600]: loss: 0.020 , acc: 98.12 %
[4,   700]: loss: 0.021 , acc: 97.91 %
[4,   800]: loss: 0.023 , acc: 97.84 %
[4,   900]: loss: 0.020 , acc: 98.22 %
[4]: Accuracy on test set: 98.4 % 
[5,   100]: loss: 0.020 , acc: 98.19 %
[5,   200]: loss: 0.022 , acc: 98.05 %
[5,   300]: loss: 0.020 , acc: 98.06 %
[5,   400]: loss: 0.018 , acc: 98.20 %
[5,   500]: loss: 0.023 , acc: 97.98 %
[5,   600]: loss: 0.019 , acc: 98.16 %
[5,   700]: loss: 0.018 , acc: 98.42 %
[5,   800]: loss: 0.020 , acc: 98.05 %
[5,   900]: loss: 0.018 , acc: 98.27 %
[5]: Accuracy on test set: 98.5 % 

NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_第5张图片 

 前馈神经网络和LeNet相比前者开始准确率高而后者开始准确率低,但与LeNet相比前馈神经网络的不足之处在于:前馈神经网络虽然在训练之初就能获得较高的准确率,但在后续的训练过程中,准确率却很难再有显著提升,且训练时间要比LeNet长。

总结 

他这次实验主要是基于LeNet实现手写数字识别,通过这次试验,对LeNet的理解又加深了一些,同时也对上课所学的知识做了个巩固。

参考:

NNDL 实验5(上) - HBU_DAVID - 博客园邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020. https://github.com/nndl/practice-in-paddle/ 第5章https://www.cnblogs.com/hbuwyg/p/16617671.htmlNNDL 实验六 卷积神经网络(3)LeNet实现MNIST_HBU_David的博客-CSDN博客_lenet实现mnistLeNet vs. FNNhttps://blog.csdn.net/qq_38975453/article/details/126799661?spm=1001.2014.3001.5502

你可能感兴趣的:(cnn,深度学习,计算机视觉)