国密祖冲之算法ZUC之Python实现

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、ZUC原理
  • 二、实现


前言

国密流密码祖冲之算法(ZUC)Python实现。


一、ZUC原理

引用其他一个博主的文章,写的非常详细!
ZUC原理

二、实现

import math
S0=[[0x3e, 0x72, 0x5b, 0x47, 0xca, 0xe0, 0x00, 0x33, 0x04, 0xd1, 0x54, 0x98, 0x09, 0xb9, 0x6d, 0xcb],
    [0x7b, 0x1b, 0xf9, 0x32, 0xaf, 0x9d, 0x6a, 0xa5, 0xb8, 0x2d, 0xfc, 0x1d, 0x08, 0x53, 0x03, 0x90],
    [0x4d, 0x4e, 0x84, 0x99, 0xe4, 0xce, 0xd9, 0x91, 0xdd, 0xb6, 0x85, 0x48, 0x8b, 0x29, 0x6e, 0xac],
    [0xcd, 0xc1, 0xf8, 0x1e, 0x73, 0x43, 0x69, 0xc6, 0xb5, 0xbd, 0xfd, 0x39, 0x63, 0x20, 0xd4, 0x38],
    [0x76, 0x7d, 0xb2, 0xa7, 0xcf, 0xed, 0x57, 0xc5, 0xf3, 0x2c, 0xbb, 0x14, 0x21, 0x06, 0x55, 0x9b],
    [0xe3, 0xef, 0x5e, 0x31, 0x4f, 0x7f, 0x5a, 0xa4, 0x0d, 0x82, 0x51, 0x49, 0x5f, 0xba, 0x58, 0x1c],
    [0x4a, 0x16, 0xd5, 0x17, 0xa8, 0x92, 0x24, 0x1f, 0x8c, 0xff, 0xd8, 0xae, 0x2e, 0x01, 0xd3, 0xad],
    [0x3b, 0x4b, 0xda, 0x46, 0xeb, 0xc9, 0xde, 0x9a, 0x8f, 0x87, 0xd7, 0x3a, 0x80, 0x6f, 0x2f, 0xc8],
    [0xb1, 0xb4, 0x37, 0xf7, 0x0a, 0x22, 0x13, 0x28, 0x7c, 0xcc, 0x3c, 0x89, 0xc7, 0xc3, 0x96, 0x56],
    [0x07, 0xbf, 0x7e, 0xf0, 0x0b, 0x2b, 0x97, 0x52, 0x35, 0x41, 0x79, 0x61, 0xa6, 0x4c, 0x10, 0xfe],
    [0xbc, 0x26, 0x95, 0x88, 0x8a, 0xb0, 0xa3, 0xfb, 0xc0, 0x18, 0x94, 0xf2, 0xe1, 0xe5, 0xe9, 0x5d],
    [0xd0, 0xdc, 0x11, 0x66, 0x64, 0x5c, 0xec, 0x59, 0x42, 0x75, 0x12, 0xf5, 0x74, 0x9c, 0xaa, 0x23],
    [0x0e, 0x86, 0xab, 0xbe, 0x2a, 0x02, 0xe7, 0x67, 0xe6, 0x44, 0xa2, 0x6c, 0xc2, 0x93, 0x9f, 0xf1],
    [0xf6, 0xfa, 0x36, 0xd2, 0x50, 0x68, 0x9e, 0x62, 0x71, 0x15, 0x3d, 0xd6, 0x40, 0xc4, 0xe2, 0x0f],
    [0x8e, 0x83, 0x77, 0x6b, 0x25, 0x05, 0x3f, 0x0c, 0x30, 0xea, 0x70, 0xb7, 0xa1, 0xe8, 0xa9, 0x65],
    [0x8d, 0x27, 0x1a, 0xdb, 0x81, 0xb3, 0xa0, 0xf4, 0x45, 0x7a, 0x19, 0xdf, 0xee, 0x78, 0x34, 0x60]]

S1=[[0x55, 0xc2, 0x63, 0x71, 0x3b, 0xc8, 0x47, 0x86, 0x9f, 0x3c, 0xda, 0x5b, 0x29, 0xaa, 0xfd, 0x77],
    [0x8c, 0xc5, 0x94, 0x0c, 0xa6, 0x1a, 0x13, 0x00, 0xe3, 0xa8, 0x16, 0x72, 0x40, 0xf9, 0xf8, 0x42],
    [0x44, 0x26, 0x68, 0x96, 0x81, 0xd9, 0x45, 0x3e, 0x10, 0x76, 0xc6, 0xa7, 0x8b, 0x39, 0x43, 0xe1],
    [0x3a, 0xb5, 0x56, 0x2a, 0xc0, 0x6d, 0xb3, 0x05, 0x22, 0x66, 0xbf, 0xdc, 0x0b, 0xfa, 0x62, 0x48],
    [0xdd, 0x20, 0x11, 0x06, 0x36, 0xc9, 0xc1, 0xcf, 0xf6, 0x27, 0x52, 0xbb, 0x69, 0xf5, 0xd4, 0x87],
    [0x7f, 0x84, 0x4c, 0xd2, 0x9c, 0x57, 0xa4, 0xbc, 0x4f, 0x9a, 0xdf, 0xfe, 0xd6, 0x8d, 0x7a, 0xeb],
    [0x2b, 0x53, 0xd8, 0x5c, 0xa1, 0x14, 0x17, 0xfb, 0x23, 0xd5, 0x7d, 0x30, 0x67, 0x73, 0x08, 0x09],
    [0xee, 0xb7, 0x70, 0x3f, 0x61, 0xb2, 0x19, 0x8e, 0x4e, 0xe5, 0x4b, 0x93, 0x8f, 0x5d, 0xdb, 0xa9],
    [0xad, 0xf1, 0xae, 0x2e, 0xcb, 0x0d, 0xfc, 0xf4, 0x2d, 0x46, 0x6e, 0x1d, 0x97, 0xe8, 0xd1, 0xe9],
    [0x4d, 0x37, 0xa5, 0x75, 0x5e, 0x83, 0x9e, 0xab, 0x82, 0x9d, 0xb9, 0x1c, 0xe0, 0xcd, 0x49, 0x89],
    [0x01, 0xb6, 0xbd, 0x58, 0x24, 0xa2, 0x5f, 0x38, 0x78, 0x99, 0x15, 0x90, 0x50, 0xb8, 0x95, 0xe4],
    [0xd0, 0x91, 0xc7, 0xce, 0xed, 0x0f, 0xb4, 0x6f, 0xa0, 0xcc, 0xf0, 0x02, 0x4a, 0x79, 0xc3, 0xde],
    [0xa3, 0xef, 0xea, 0x51, 0xe6, 0x6b, 0x18, 0xec, 0x1b, 0x2c, 0x80, 0xf7, 0x74, 0xe7, 0xff, 0x21],
    [0x5a, 0x6a, 0x54, 0x1e, 0x41, 0x31, 0x92, 0x35, 0xc4, 0x33, 0x07, 0x0a, 0xba, 0x7e, 0x0e, 0x34],
    [0x88, 0xb1, 0x98, 0x7c, 0xf3, 0x3d, 0x60, 0x6c, 0x7b, 0xca, 0xd3, 0x1f, 0x32, 0x65, 0x04, 0x28],
    [0x64, 0xbe, 0x85, 0x9b, 0x2f, 0x59, 0x8a, 0xd7, 0xb0, 0x25, 0xac, 0xaf, 0x12, 0x03, 0xe2, 0xf2]]

D=[ 0x44d7, 0x26bc, 0x626b, 0x135e, 0x5789, 0x35e2, 0x7135, 0x09af,
    0x4d78, 0x2f13, 0x6bc4, 0x1af1, 0x5e26, 0x3c4d, 0x789a, 0x47ac]

S=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Key_result=[]
keylen=2
X=[0,0,0,0]
R1=0
R2=0
W=0
m32=pow(2,32)

def BitReconstruction():
    X[0]=add2(S[15],S[14])
    X[1]=add(S[11],S[9])
    X[2]=add(S[7],S[5])
    X[3]=add(S[2],S[0])


def LFSRWithInitMode(u):
    v=(2**15*S[15]+2**17*S[13]+2**21*S[10]+2**20*S[4]+(1+2**8)*S[0])%(2**31-1)
    S.append((v+u)%(2**31-1))
    if S[16]==0:
        S[16]=2**31-1
    S.pop(0)

def LFSRWithWorkMode():
    S.append((2 ** 15 * S[15] + 2 ** 17 * S[13] + 2 ** 21 * S[10] + 2 ** 20 * S[4] + (1 + 2 ** 8) * S[0]) % (2 ** 31 - 1))
    if S[16] == 0:
        S[16] = 2 ** 31 - 1
    S.pop(0)

def F(X0,X1,X2):
    global R1,R2,W
    W=mod32(X0 ^ R1,R2)
    W1=mod32(R1,X1)
    W2=R2 ^ X2

    R1=S_(L1(((W1<<16) | (W2>>16)) & 0xffffffff))
    R2=S_(L2(((W2<<16) | (W1>>16)) & 0xffffffff))

def L1(X):
    return X ^ rot(X ,2) ^ rot(X ,10)^ rot(X ,18) ^ rot(X ,24)& 0xffffffff

def L2(X):
    return X ^ rot(X ,8) ^ rot(X ,14) ^ rot(X ,22) ^ rot(X ,30)& 0xffffffff

def S_(X):
    bit8=[0,0,0,0]
    result=[0,0,0,0]
    bit8[0]=X>>24
    bit8[1]=(X>>16)&0xff
    bit8[2]=(X>>8)&0xff
    bit8[3]=X&0xff
    for i in range(4):
        row = bit8[i] >> 4
        nuw = bit8[i] & 0xf
        if i == 0 or i== 2:
            result[i]=S0[row][nuw]
        else:
            result[i]=S1[row][nuw]
    ans = (result[0] << 24) | (result[1] << 16) | (result[2] << 8) | result[3]
    return ans

def rot(X,i):
  return ((X<<i)& 0xffffffff)|(X>>(32-i))

def mod32(R,X):
    return (R + X)%m32

def H(X):
#高16
    bits=(X>>15) & 0xffff
    return bits

def L(X):
#16
    bits = X & 0xffff
    return bits

def add(W1,W2):
    W1l=L(W1)<<16
    W2h=H(W2)
    all=W1l|W2h
    return all

def add2(W1,W2):
    W1h = H(W1)<<16
    W2l = L(W2)
    all=W1h|W2l
    return all

def init(key,iv):
    global R1, R2, W,S
    for i in range(16):
        S[i] = (key[i] << 23) | (D[i] << 8) | iv[i]
    print('初始化之前:')
    print_S()
    for i in range(32):
        BitReconstruction()
        F(X[0], X[1], X[2])
        LFSRWithInitMode(W >> 1)
        print_status()

def calc():
    BitReconstruction()
    F(X[0], X[1], X[2])
    LFSRWithWorkMode()
    for i in range(keylen):
        BitReconstruction()
        F(X[0], X[1], X[2])
        Key_result.append(W^X[3])
        LFSRWithWorkMode()
        print_status()

def print_S():
    for i in range(16):
        if i==8:
            print()
        print('S'+str(i)+':\033[1;32m'+hex(S[i]).replace('0x','')+'\033[0m ',end='')
    print()

def print_status():
    for i in range(4):
        print('X' + str(i) + ':\033[1;31m' + hex(X[i]).replace('0x', '') + '\033[0m ', end='')
    print('R1' +  ':\033[1;34m' + hex(R1).replace('0x', '') + '\033[0m ', end='')
    print('R2' + ':\033[1;34m' + hex(R2).replace('0x', '') + '\033[0m ', end='')
    print('W'  + ':\033[1;35m' + hex(W).replace('0x', '') + '\033[0m ', end='')
    print('S15' + ':\033[1;36m' + hex(S[15]).replace('0x', '') + '\033[0m ', end='')
    print()

def print_key():
    for i in range(keylen):
        print('KEY' + str(i) + ':\033[1;36m' + hex(Key_result[i]).replace('0x', '') + '\033[0m ', end='')

if __name__ == '__main__':
    key=[0x3d,0x4c,0x4b,0xe9,0x6a,0x82,0xfd,0xae,0xb5,0x8f,0x64,0x1d,0xb1,0x7b,0x45,0x5b]
    iv=[0x84,0x31,0x9a,0xa8,0xde,0x69,0x15,0xca,0x1f,0x6b,0xda,0x6b,0xfb,0xd8,0xc7,0x66]
    init(key,iv)
    print_S()
    calc()
    print_key()

结果:这里取两个KEY验证,结果是正确的的!

![在这里插入图片描述](https://img-blog.csdnimg.cn/20201204165958733.png
国密祖冲之算法ZUC之Python实现_第1张图片

国密祖冲之算法ZUC之Python实现_第2张图片

你可能感兴趣的:(祖冲之,密码学,算法,python)