import numpy as np
x = np.arange(0, 9).reshape(3, 3)
max = np.min(x)
min = np.max(x)
print('type(x): ', type(x))
print('x.shape: ', x.shape)
print('max: %d , min: %d' % (max, min))
# type(x):
# x.shape: (3, 3)
# max: 0 , min: 8
代码如下:
X = np.array([[[1, 2, 3],[4, 5, 6],[7, 8, 9]],[[11, 12, 13],[14, 15, 16],[17, 18, 19]],[[21, 22, 23],[24, 25, 26],[27, 28, 29]]])
print(X.shape)
print(X)
'''
(3, 3, 3)
[[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]]
[[11 12 13]
[14 15 16]
[17 18 19]]
[[21 22 23]
[24 25 26]
[27 28 29]]]
'''
Y1 = X[::2, :, :]
print(Y1.shape)
print(Y1)
'''
(2, 3, 3)
[[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]]
[[21 22 23]
[24 25 26]
[27 28 29]]]
'''
Y2 = X[:, ::2, :]
print(Y1.shape)
print(Y2)
'''
(3, 2, 3)
[[[ 1 2 3]
[ 7 8 9]]
[[11 12 13]
[17 18 19]]
[[21 22 23]
[27 28 29]]]
'''
Y3 = X[:, :, ::2]
print(Y1.shape)
print(Y3)
'''
(3, 3, 2)
[[[ 1 3]
[ 4 6]
[ 7 9]]
[[11 13]
[14 16]
[17 19]]
[[21 23]
[24 26]
[27 29]]]
'''
#-*- coding: utf-8 -*-
# 导入包
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from PIL import Image
#读取图片,并转为数组
im = np.array(Image.open("./images/1.jpg"))
# 打印数组
print(im)
# 隐藏x轴和y轴
plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)
# 显示图片
plt.imshow(im)
# #输出图中的最大和最小像素值
print(int(im.min()),int(im.max()))
# 显示图片
plt.show()
import torch
x = torch.rand(1, 3, 9, 9)
print(x)
print('type(x): ', type(x))
print('x.shape: ', x.shape)
# type(x):
# x.shape: torch.Size([1, 3, 9, 9])
img_path = './Images/1.jpg'
img = cv2.imread(img_path)
tran = transforms.ToTensor()
img_tensor = tran(img)
print(img_tensor.size()) # torch.Size([3, 256, 256])
image = torch.unsqueeze(img_tensor, 0)
print(image.size()) # torch.Size([1, 3, 256, 256])