转载 J.Q.Wang2011 -----深度强化学习系列: 最全深度强化学习资料
下面附上原地址 https://blog.csdn.net/gsww404/article/details/103074046
关于这项工作:
本工作是一项由深度强化学习实验室(Deep Reinforcement Learning Laboratory, DeepRL-Lab)发起的项目。
文章同步于Github仓库:
https://github.com/NeuronDance/DeepRL/tree/master/A-Guide-Resource-For-DeepRL(点击进入GitHub)
欢迎大家Star, Fork和Contribution.
UCL Course on RL(★★★) by David Sliver, Video-en,Video-zh
OpenAI’s Spinning Up in Deep RL by OpenAI(2018)
Udacity-Deep Reinforcement learning, 2019-10-31
Stanford CS-234: Reinforcement Learning (2019), Videos
DeepMind Advanced Deep Learning & Reinforcement Learning (2018),Videos
GeorgiaTech CS-8803 Deep Reinforcement Learning (2018?)
UC Berkeley CS294-112 Deep Reinforcement Learning (2018 Fall),Video-zh
Deep RL Bootcamp by Berkeley CA(2017)
Thomas Simonini’s Deep Reinforcement Learning Course
CS-6101 Deep Reinforcement Learning , NUS SoC, 2018/2019, Semester II
Course on Reinforcement Learning by Alessandro Lazaric,2018
Learn Deep Reinforcement Learning in 60 days
Deep Reinforcement Learning by Yuxi Li
Algorithms for Reinforcement Learning by Morgan & Claypool, 2009
Modern Deep Reinforcement Learning Algorithms by Sergey Ivanov(54-Page)
Deep Reinforcement Learning: An Overview (2018)
A Brief Survey of Deep Reinforcement Learning (2017)
Deep Reinforcement Learning Doesn’t Work Yet(★) by Irpan, Alex(2018), ChineseVersion
Deep Reinforcement Learning that Matters(★) by Peter Henderson1, Riashat Islam1
A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress
Applications of Deep Reinforcement Learning in Communications and Networking: A Survey
An Introduction to Deep Reinforcement Learning
Challenges of Real-World Reinforcement Learning
Topics in Reinforcement Learning
Reinforcement Learning: A Survey,1996.
A Tutorial Survey of Reinforcement Learning, Sadhana,1994.
Reinforcement Learning in Robotics, A Survey, 2013
A Survey of Deep Network Solutions for Learning Control in Robotics: From Reinforcement to Imitation., 2018
Universal Reinforcement Learning Algorithms: Survey and Experiments,2017
Bayesian Reinforcement Learning: A Survey, 2016
Benchmarking Reinforcement Learning Algorithms on Real-World Robots
OpenAI Gym (GitHub) (docs)
rllab (GitHub) (readthedocs)
Ray (Doc)
Dopamine: https://github.com/google/dopamine (uses some tensorflow)
trfl: https://github.com/deepmind/trfl (uses tensorflow)
ChainerRL (GitHub) (API: Python)
Surreal GitHub (API: Python) (support: Stanford Vision and Learning Lab).Paper
PyMARL GitHub (support: http://whirl.cs.ox.ac.uk/)
TF-Agents: https://github.com/tensorflow/agents (uses tensorflow)
TensorForce (GitHub) (uses tensorflow)
RL-Glue (Google Code Archive) (API: C/C++, Java, Matlab, Python, Lisp) (support: Alberta)
MAgent https://github.com/geek-ai/MAgent (uses tensorflow)
RLlib http://ray.readthedocs.io/en/latest/rllib.html (API: Python)
http://burlap.cs.brown.edu/ (API: Java)
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
robotics-rl-srl - S-RL Toolbox: Reinforcement Learning (RL) and State Representation Learning (SRL) for Robotics
pysc2: StarCraft II Learning Environment
Arcade-Learning-Environment
OpenAI universe - A software platform for measuring and training an AI’s general intelligence across the world’s supply of games, websites and other applications
DeepMind Lab - A customisable 3D platform for agent-based AI research
Project Malmo - A platform for Artificial Intelligence experimentation and research built on top of Minecraft by Microsoft
Retro Learning Environment - An AI platform for reinforcement learning based on video game emulators. Currently supports SNES and Sega Genesis. Compatible with OpenAI gym.
torch-twrl - A package that enables reinforcement learning in Torch by Twitter
UETorch - A Torch plugin for Unreal Engine 4 by Facebook
TorchCraft - Connecting Torch to StarCraft
rllab - A framework for developing and evaluating reinforcement learning algorithms, fully compatible with OpenAI Gym
TensorForce - Practical deep reinforcement learning on TensorFlow with Gitter support and OpenAI Gym/Universe/DeepMind Lab integration.
OpenAI lab - An experimentation system for Reinforcement Learning using OpenAI Gym, Tensorflow, and Keras.
keras-rl - State-of-the art deep reinforcement learning algorithms in Keras designed for compatibility with OpenAI.
BURLAP - Brown-UMBC Reinforcement Learning and Planning, a library written in Java
MAgent - A Platform for Many-agent Reinforcement Learning.
Ray RLlib - Ray RLlib is a reinforcement learning library that aims to provide both performance and composability.
SLM Lab - A research framework for Deep Reinforcement Learning using Unity, OpenAI Gym, PyTorch, Tensorflow.
Unity ML Agents - Create reinforcement learning environments using the Unity Editor
Intel Coach - Coach is a python reinforcement learning research framework containing implementation of many state-of-the-art algorithms.
ELF - An End-To-End, Lightweight and Flexible Platform for Game Research
Unity ML-Agents Toolkit
rlkit
https://gym.openai.com/envs/#classic_control
https://github.com/erlerobot/gym-gazebo
https://github.com/robotology/gym-ignition
https://github.com/dartsim/gym-dart
https://github.com/Roboy/gym-roboy
https://github.com/openai/retro
https://github.com/openai/gym-soccer
https://github.com/duckietown/gym-duckietown
https://github.com/Unity-Technologies/ml-agents (Unity, multiagent)
https://github.com/koulanurag/ma-gym (multiagent)
https://github.com/ucuapps/modelicagym
https://github.com/mwydmuch/ViZDoom
https://github.com/benelot/pybullet-gym
https://github.com/Healthcare-Robotics/assistive-gym
https://github.com/Microsoft/malmo
https://github.com/nadavbh12/Retro-Learning-Environment
https://github.com/twitter/torch-twrl
https://github.com/arex18/rocket-lander
https://github.com/ppaquette/gym-doom
https://github.com/thedimlebowski/Trading-Gym
https://github.com/Phylliade/awesome-openai-gym-environments
https://github.com/deepmind/pysc2 (by DeepMind) (Blizzard StarCraft II Learning Environment (SC2LE) component)
playing atari with deep reinforcement learning NIPS Deep Learning Workshop 2013. paper
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller
Human-level control through deep reinforcement learning Nature 2015. paper
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis
Deep Reinforcement Learning with Double Q-learning AAAI 16. paper
Hado van Hasselt, Arthur Guez, David Silver
Dueling Network Architectures for Deep Reinforcement Learning ICML16. paper
Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas
Deep Recurrent Q-Learning for Partially Observable MDPs AAA15. paper
Matthew Hausknecht, Peter Stone
Prioritized Experience Replay ICLR 2016. paper
Tom Schaul, John Quan, Ioannis Antonoglou, David Silver
Asynchronous Methods for Deep Reinforcement Learning ICML2016. paper
Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu
A Distributional Perspective on Reinforcement Learning ICML2017. paper
Marc G. Bellemare, Will Dabney, Rémi Munos
Noisy Networks for Exploration ICLR2018. paper
Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg
Rainbow: Combining Improvements in Deep Reinforcement Learning AAAI2018. paper
Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, David Silver
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion NIPS2018. paper
Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee
Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning ICML2018.paper
Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, Sergey Levine
Value Prediction Network NIPS2017. paper
Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, Sergey Levine
Imagination-Augmented Agents for Deep Reinforcement Learning NIPS2017. paper
Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra
Continuous Deep Q-Learning with Model-based Acceleration ICML2016. paper
Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, Sergey Levine
Uncertainty-driven Imagination for Continuous Deep Reinforcement Learning CoRL2017. paper
Gabriel Kalweit, Joschka Boedecker
Model-Ensemble Trust-Region Policy Optimization ICLR2018. paper
Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, Pieter Abbeel
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models NIPS2018. paper
Kurtland Chua, Roberto Calandra, Rowan McAllister, Sergey Levine
Dyna, an integrated architecture for learning, planning, and reacting ACM1991. paper
Sutton, Richard S
Learning Continuous Control Policies by Stochastic Value Gradients NIPS 2015. paper
Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, Tom Erez
Imagination-Augmented Agents for Deep Reinforcement Learning NIPS 2017. paper
Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks ICLR 2017. paper
Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft
…
2019-07
Jun
April-May
March 2019
Feb 2019
Jan 2019
2018
arxiv
arxiv
arxiv
⭐️arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
code
arxiv
arxiv
code
arxiv
arxiv
arxiv
code
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
code
arxiv
tensorflow
arxiv
arxiv
arxiv
code
arxiv
arxiv
2017
arxiv
arxiv
code
arxiv
arxiv
arxiv
⭐️arxiv
arxiv
pdf
arxiv
arxiv
tensorflow
arxiv
code
arxiv
code
arxiv
arxiv
code
arxiv
arxiv
code
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
tensorflow
arxiv
tensorflow
arxiv
code
⭐️arxiv
arxiv
arxiv
tensorflow
arxiv
arxiv
arxiv
arxiv
arxiv
arxiv
code
arxiv
code
arxiv
⭐️arxiv
code
arxiv
arxiv
arxiv
arxiv
code
pdf
code
arxiv
code
arxiv
code
arxiv
code
arxiv
code
arxiv
arxiv
arxiv
arxiv
2016
tensorflow
arxiv
code
2015
arxiv
arxiv
⭐️arxiv
⭐️arxiv
⭐️arxiv
⭐️arxiv
⭐️arxiv
arxiv
⭐️arxiv
⭐️pdf
pdf
⭐️arxiv
arxiv
⭐️arxiv
arxiv
arxiv
nature
⭐️arxiv
⭐️arxiv
pdf
⭐️pdf
⭐️arxiv
arxiv
pdf
] ⭐️arxiv
arxiv
arxiv
arxiv
arxiv
pdf
⭐️pdf
arxiv
2014
2013
These documents will be updated in sync with my personal blog and knowledge column
Based on the above information, we have made a comprehensive summary of the deep reinforcement of learning materials, and we would like to express our heartfelt thanks to them.
[1].https://github.com/brianspiering/awesome-deep-rl
[2].https://github.com/jgvictores/awesome-deep-reinforcement-learning
[3].https://github.com/PaddlePaddle/PARL/blob/develop/papers/archive.md#distributed-training
[4].https://github.com/LantaoYu/MARL-Papers
[5].https://github.com/gopala-kr/DRL-Agents
[6].https://github.com/junhyukoh/deep-reinforcement-learning-papers
[7].https://www.eff.org/ai/metrics#Source-Code
[8].https://agi.university/the-landscape-of-deep-reinforcement-learning
[9].https://github.com/tigerneil/awesome-deep-rl
[10].https://planspace.org/20170830-berkeley_deep_rl_bootcamp/
[11].https://aikorea.org/awesome-rl/
[12].https://github.com/junhyukoh/deep-reinforcement-learning-papers