分享Python学习路线:第一阶段:Python基础与Linux数据库这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。
你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模板、函数、异常处理、mysql使用、协程等知识点。
学习目标:掌握Python的基本语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。
第二阶段:web全栈这一部分主要学习web前端相关技术,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web开发基础、Vue、FIaskViews、FIask模板、数据库操作、FIask配置等知识。
学习目标:掌握web前端技术内容,掌握web后端框架,熟练使用FIask、Tornado、Django,可以完成数据监控后台的项目。
第三阶段:数据分析+人工智能这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。
学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。
第四阶段:高级进阶这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。
学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。
当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发教程开始入门!
B站搜索尚学堂官方号,Python教学视频,从基础到高级的都有,还挺不错的,知识点讲得很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。
谷歌人工智能写作项目:神经网络伪原创
自学深度学习是一个漫长而艰巨的过程好文案。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。
即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。
如果我必须重新学习Python的深度学习,我会从AndrewTrask写的Grokkingdeeplearning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。
除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。
这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。
用Python构建人工神经元大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。
相比之下,《运用深度学习》(GrokkingDeepLearning)通过从零开始、一行一行地构建内容来教你进行深度学习。《运用深度学习》你首先要开发一个人工神经元,这是深度学习的最基本元素。
查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。
有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。
当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。
随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。
如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。代码库有点麻烦并不是所有关于Grokking深度学习的东西都是完美的。
在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。在GitHub的Grokking深度学习库中,每一章都有丰富的jupiterNotebook文件。
jupiterNotebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。
Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。
作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。此外,Trask在Python2.7中编写了这些代码。
虽然他已经确保了代码在Python3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“foriinrange(len(array))”范式在数组上迭代)。
更广阔的人工智能图景Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(TywinLannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。
事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。
关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。
我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearningsubreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。
用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客。
#coding:utf-8''' GPU run command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python CPU run command: python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。
'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024) # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。
1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。
4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。
4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。
verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=True, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) height_shift_range=0.2, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch): print('-'*40) print('Epoch', e) print('-'*40) print("Training...") # batch train with realtime data augmentation progbar = generic_utils.Progbar(data.shape[0]) for X_batch, Y_batch in (data, label): loss,accuracy = model.train(X_batch, Y_batch,accuracy=True) (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。
。
这里整理了一份Python开发的学习路线,可按照这份大纲来安排学习计划~第一阶段:专业核心基础阶段目标:1.熟练掌握Python的开发环境与编程核心知识2.熟练运用Python面向对象知识进行程序开发3.对Python的核心库和组件有深入理解4.熟练应用SQL语句进行数据库常用操作5.熟练运用Linux操作系统命令及环境配置6.熟练使用MySQL,掌握数据库高级操作7.能综合运用所学知识完成项目知识点:Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。
为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发阶段目标:1.熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架2.深入理解Web系统中的前后端交互过程与通信协议3.熟练运用Web前端和Django和Flask等主流框架完成Web系统开发4.深入理解网络协议,分布式,PDBC,AJAX,JSON等知识5.能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理6.使用Web开发框架实现贯穿项目知识点:Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。
掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析阶段目标:1.熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析2.熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取3.熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理4.熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取5.熟练掌握数据分析相关概念及工作流程6.熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用7.熟练掌握数据清洗、整理、格式转换、数据分析报告编写8.能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战知识点:网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。
能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能阶段目标:1.理解机器学习相关的基本概念及系统处理流程2.能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题3.熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等4.掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等5.掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目知识点:1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。
熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflowplayround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
神经网络结构具有以下三个特点:神经元之间全连接,并且为单层神经网络。每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。
在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。
假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。
Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。
当然,根据热力学上,平衡状态分为stablestate和metastablestate,这两种状态在网络的收敛过程中都是非常可能的。为递归型网络,t时刻的状态与t-1时刻的输出状态有关。
之后的神经元更新过程也采用的是异步更新法(Asynchronous)。Hopfield神经网络用python实现。
学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!
下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。
突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。
我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?
你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。训练过程但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。
拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。
计算误差,即神经元的输出与训练样本中的期待输出之间的差值。根据误差略微地调整权重。重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。
如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。这个过程就是backpropagation。计算神经元输出的公式你可能会想,计算神经元输出的公式是什么?
首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。
把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。调整权重的公式我们在训练时不断调整权重。但是怎么调整呢?
可以使用“ErrorWeightedDerivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。
最后,乘以Sigmoid曲线的斜率(图4)。
为了理解最后一条,考虑这些:我们使用Sigmoid曲线计算神经元的输出如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式从图四可以看出,在较大数值处,Sigmoid曲线斜率小如果神经元认为当前权重是正确的,就不会对它进行很大调整。
乘以Sigmoid曲线斜率便可以实现这一点Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。
构造Python代码虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。
分别是:exp--自然指数array--创建矩阵dot--进行矩阵乘法random--产生随机数比如,我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。
所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。
所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。我们做到了!我们用Python构建了一个简单的神经网络!首先神经网络对自己赋予随机权重,然后使用训练集训练自己。
接着,它考虑一种新的情形[1,0,0]并且预测了0.99993704。正确答案是1。非常接近!传统计算机程序通常不会学习。
而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。
可以自学,一般学习需要几个月左右的时间,Python入门简单,并不代表会一直简单。要学会用Python干活,还需要学习Python的各种库,它的强大在于库。
原因是Python的库可以用Python,c语言,c++等设计,再提供给Python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。
根据Dehghani的说法,Python在Python3之后,随着时间的推移而逐渐成熟,新的架构方法如微服务和容器,以及人工智能的进步,都使得企业在整个开发生命周期中更多地使用它,而不仅仅是停留在研究阶段。
扩展资料:Python之所以成为广受欢迎的机器学习语言,主要基于以下三个原因:1、门槛低,上手快;2、Python是解释语言,写程序很方便;3、Python的开发生态成熟,有很多非常有用的库可以用。
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。
实验输入仍然采用MNIST图像使用10个featuremap时,卷积和pooling的结果分别如下所示。
部分源码如下:[python] viewplain copy#coding=utf-8'''''Created on 2014年11月30日@author: Wangliaofan'''import numpyimport structimport matplotlib.pyplot as pltimport mathimport randomimport copy#testfrom BasicMultilayerNeuralNetwork import BMNN2def sigmoid(inX):if (-inX)== 0.0:return 999999999.999999999return 1.0/((-inX))def difsigmoid(inX):return sigmoid(inX)*(1.0-sigmoid(inX))def tangenth(inX):return (1.0*(inX)-1.0*(-inX))/(1.0*(inX)+1.0*(-inX))def cnn_conv(in_image, filter_map,B,type_func='sigmoid'):#in_image[num,feature map,row,col]=>in_image[Irow,Icol]#features map[k filter,row,col]#type_func['sigmoid','tangenth']#out_feature[k filter,Irow-row+1,Icol-col+1]shape_image=numpy.shape(in_image)#[row,col]#print "shape_image",shape_imageshape_filter=numpy.shape(filter_map)#[k filter,row,col]if shape_filter[1]>shape_image[0] or shape_filter[2]>shape_image[1]:raise Exceptionshape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)out_feature=numpy.zeros(shape_out)k,m,n=numpy.shape(out_feature)for k_idx in range(0,k):#rotate 180 to calculate convc_filter=numpy.rot90(filter_map[k_idx,:,:], 2)for r_idx in range(0,m):for c_idx in range(0,n):#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)(conv_temp)if type_func=='sigmoid':out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])elif type_func=='tangenth':out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])else:raise Exceptionreturn out_featuredef cnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):k,row,col=numpy.shape(out_feature)max_index_Matirx=numpy.zeros((k,row,col))out_row=int(numpy.floor(row/pooling_size))out_col=int(numpy.floor(col/pooling_size))out_pooling=numpy.zeros((k,out_row,out_col))for k_idx in range(0,k):for r_idx in range(0,out_row):for c_idx in range(0,out_col):temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]out_pooling[k_idx,r_idx,c_idx](temp_matrix)max_index=numpy.argmax(temp_matrix)#print max_index#print max_index/pooling_size,max_index%pooling_sizemax_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1return out_pooling,max_index_Matirxdef poolwithfunc(in_pooling,W,B,type_func='sigmoid'):k,row,col=numpy.shape(in_pooling)out_pooling=numpy.zeros((k,row,col))for k_idx in range(0,k):for r_idx in range(0,row):for c_idx in range(0,col):out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])return out_pooling#out_feature is the out put of convdef backErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):k1,row,col=numpy.shape(out_feature)error_conv=numpy.zeros((k1,row,col))k2,theta_row,theta_col=numpy.shape(theta)if k1!=k2:raise Exceptionfor idx_k in range(0,k1):for idx_row in range( 0, row):for idx_col in range( 0, col):error_conv[idx_k,idx_row,idx_col]=\max_index_Matirx[idx_k,idx_row,idx_col]*\float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*\difsigmoid(out_feature[idx_k,idx_row,idx_col])return error_convdef backErrorfromConvToInput(theta,inputImage):k1,row,col=numpy.shape(theta)#print "theta",k1,row,coli_row,i_col=numpy.shape(inputImage)if row>i_row or col> i_col:raise Exceptionfilter_row=i_row-row+1filter_col=i_col-col+1detaW=numpy.zeros((k1,filter_row,filter_col))#the same with conv valid in matlabfor k_idx in range(0,k1):for idx_row in range(0,filter_row):for idx_col in range(0,filter_col):subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]#print "subInputMatrix",numpy.shape(subInputMatrix)#rotate theta 180#print numpy.shape(theta)theta_rotate=numpy.rot90(theta[k_idx,:,:], 2)#print "theta_rotate",theta_rotate(subInputMatrix,theta_rotate)detaW[k_idx,idx_row,idx_col](dotMatrix)detaB=numpy.zeros((k1,1))for k_idx in range(0,k1):detaB[k_idx](theta[k_idx,:,:])return detaW,detaBdef loadMNISTimage(absFilePathandName,datanum=60000):images=open(absFilePathandName,'rb')()index=0magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)print magic, numImages , numRows , numColumnsindex += struct.calcsize('>IIII')if magic != 2051:raise Exceptiondatasize=int(784*datanum)datablock=">"+str(datasize)+"B"#nextmatrix=struct.unpack_from('>47040000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)/255.0#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)return nextmatrix, numImagesdef loadMNISTlabels(absFilePathandName,datanum=60000):labels=open(absFilePathandName,'rb')()index=0magic, numLabels = struct.unpack_from('>II' , buf , index)print magic, numLabelsindex += struct.calcsize('>II')if magic != 2049:raise Exceptiondatablock=">"+str(datanum)+"B"#nextmatrix=struct.unpack_from('>60000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)return nextmatrix, numLabelsdef simpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):decayRate=0.01MNISTimage,num1=loadMNISTimage("F:\Machine Learning\UFLDL\data\common\\train-images-idx3-ubyte",imageNum)print num1row,col=numpy.shape(MNISTimage[0,0,:,:])out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)MLP.setTrainDataNum(imageNum)MLP.loadtrainlabel("F:\Machine Learning\UFLDL\data\common\\train-labels-idx1-ubyte")MLP.initialweights()#MLP.printWeightMatrix()rng = numpy.random.RandomState(23455)W_shp = (numofFilter, filter_size, filter_size)W_bound = (numofFilter * filter_size * filter_size)W_k=rng.uniform(low=-1.0 / W_bound,high=1.0 / W_bound,size=W_shp)B_shp = (numofFilter,)B= numpy.asarray(rng.uniform(low=-.5, high=.5, size=B_shp))cIter=0while cIter。