这篇内容是实践,会调用一些函数,代码已经在最后展出,可以直接用
在本节,我们用入门深度学习的基础实验之一“鸢尾花分类任务”来进行实践,使用经典学术数据集Iris作为训练数据,实现基于Softmax回归的鸢尾花分类任务。
实践流程主要包括以下7个步骤:数据处理、模型构建、损失函数定义、优化器构建、模型训练、模型评价和模型预测等,
本实践的主要配置如下:
Iris数据集,也称为鸢尾花数据集,包含了3种鸢尾花类别(Setosa、Versicolour、Virginica),每种类别有50个样本,共计150个样本。其中每个样本中包含了4个属性:花萼长度、花萼宽度、花瓣长度以及花瓣宽度,本实验通过鸢尾花这4个属性来判断该样本的类别。
鸢尾花属性
属性1 | 属性2 | 属性3 | 属性4 |
---|---|---|---|
sepal_length | sepal_width | petal_length | petal_width |
花萼长度 | 花萼宽度 | 花瓣长度 | 花瓣宽度 |
鸢尾花类别
英文名 | 中文名 | 标签 |
---|---|---|
Setosa | Iris | 狗尾草鸢尾 |
Versicolour | Iris | 杂色鸢尾 |
Virginica | Iris | 弗吉尼亚鸢尾 |
鸢尾花属性类别对应预览
sepal_length | sepal_width | petal_length | petal_width | species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
… | … | … | … | … |
对数据集中的缺失值或异常值等情况进行分析和处理,保证数据可以被模型正常读取。
代码实现如下:
from sklearn.datasets import load_iris
import pandas
import numpy as np
# 对数据集中的缺失值或异常值等情况进行分析和处理,保证数据可以被模型正常读取。代码实现如下:
iris_features = np.array(load_iris().data, dtype=np.float32)
iris_labels = np.array(load_iris().target, dtype=np.int32)
print(pandas.isna(iris_features).sum())
print(pandas.isna(iris_labels).sum())
运行结果:
0
0
从输出结果看,鸢尾花数据集中不存在缺失值的情况。
通过箱线图直观的显示数据分布,并观测数据中的异常值。
# 通过箱线图直观的显示数据分布,并观测数据中的异常值。
import matplotlib.pyplot as plt #可视化工具
# 箱线图查看异常值分布
def boxplot(features):
feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
# 连续画几个图片
plt.figure(figsize=(5, 5), dpi=200)
# 子图调整
plt.subplots_adjust(wspace=0.6)
# 每个特征画一个箱线图
for i in range(4):
plt.subplot(2, 2, i+1)
# 画箱线图
plt.boxplot(features[:, i],
showmeans=True,
whiskerprops={"color":"#E20079", "linewidth":0.4, 'linestyle':"--"},
flierprops={"markersize":0.4},
meanprops={"markersize":1})
# 图名
plt.title(feature_names[i], fontdict={"size":5}, pad=2)
# y方向刻度
plt.yticks(fontsize=4, rotation=90)
plt.tick_params(pad=0.5)
# x方向刻度
plt.xticks([])
plt.savefig('ml-vis.pdf')
plt.show()
boxplot(iris_features)
从输出结果看,数据中基本不存在异常值,所以不需要进行异常值处理。
本实验中将数据集划分为了三个部分:
在本实验中,将 80 % 80\% 80%的数据用于模型训练, 10 % 10\% 10%的数据用于模型验证, 10 % 10\% 10%的数据用于模型测试。
代码实现如下:
# 加载数据集
def load_data(shuffle=True):
'''
加载鸢尾花数据
输入:
- shuffle:是否打乱数据,数据类型为bool
输出:
- X:特征数据,shape=[150,4]
- y:标签数据, shape=[150]
'''
# 加载原始数据
X = np.array(load_iris().data, dtype=np.float32)
y = np.array(load_iris().target, dtype=np.float32)
X = torch.tensor(X)
y = torch.tensor(y)
# 数据归一化
X_min = torch.min(X, dim=0).values
X_max = torch.max(X, dim=0).values
X = (X-X_min) / (X_max-X_min)
# 如果shuffle为True,随机打乱数据
if shuffle:
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
return X, y
# 固定随机种子
torch.manual_seed(102)
num_train = 120
num_dev = 15
num_test = 15
X, y = load_data(shuffle=True)
print("X shape: ", X.shape, "y shape: ", y.shape)
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
运行结果:
X shape: torch.Size([150, 4]) y shape: torch.Size([150])
# 打印X_train和y_train的维度
print("X_train shape: ", X_train.shape, "y_train shape: ", y_train.shape)
运行结果:
X_train shape: torch.Size([120, 4]) y_train shape: torch.Size([120])
# 打印前5个数据的标签
print(y_train[:5])
运行结果:
tensor([1., 2., 0., 1., 2.])
使用Softmax回归模型进行鸢尾花分类实验,将模型的输入维度定义为4,输出维度定义为3。
代码实现如下:
import op
# 输入维度
input_dim = 4
# 类别数
output_dim = 3
# 实例化模型
model = op.model_SR(input_dim=input_dim, output_dim=output_dim)
实例化RunnerV2类,使用训练集和验证集进行模型训练,共训练80个epoch,其中每隔10个epoch打印训练集上的指标,并且保存准确率最高的模型作为最佳模型。
代码实现如下:
import op, metric, opitimizer, RunnerV2
# 学习率
lr = 0.2
# 梯度下降法
optimizer = opitimizer.SimpleBatchGD(init_lr=lr, model=model)
# 交叉熵损失
loss_fn = op.MultiCrossEntropyLoss()
# 准确率
metric2 = metric.accuracy
# 实例化RunnerV2
runner = RunnerV2.RunnerV2(model, optimizer, metric2, loss_fn)
# # 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=200, log_epochs=10, save_path="best_model.pdparams")
运行结果:
best accuracy performence has been updated: 0.00000 --> 0.46667
[Train] epoch: 0, loss: 1.09861159324646, score: 0.375
[Dev] epoch: 0, loss: 1.0893398523330688, score: 0.46666666865348816
[Train] epoch: 10, loss: 0.9781171679496765, score: 0.699999988079071
[Dev] epoch: 10, loss: 1.0236393213272095, score: 0.46666666865348816
[Train] epoch: 20, loss: 0.8900946974754333, score: 0.699999988079071
[Dev] epoch: 20, loss: 0.9741119742393494, score: 0.46666666865348816
[Train] epoch: 30, loss: 0.8204634189605713, score: 0.699999988079071
[Dev] epoch: 30, loss: 0.9319687485694885, score: 0.46666666865348816
[Train] epoch: 40, loss: 0.76439368724823, score: 0.699999988079071
[Dev] epoch: 40, loss: 0.896036684513092, score: 0.46666666865348816
[Train] epoch: 50, loss: 0.7185509204864502, score: 0.7250000238418579
[Dev] epoch: 50, loss: 0.8653663396835327, score: 0.46666666865348816
[Train] epoch: 60, loss: 0.6804777979850769, score: 0.7416666746139526
[Dev] epoch: 60, loss: 0.8390589952468872, score: 0.46666666865348816
[Train] epoch: 70, loss: 0.6483750939369202, score: 0.7583333253860474
[Dev] epoch: 70, loss: 0.816339910030365, score: 0.46666666865348816
[Train] epoch: 80, loss: 0.6209224462509155, score: 0.7666666507720947
[Dev] epoch: 80, loss: 0.796570360660553, score: 0.46666666865348816
[Train] epoch: 90, loss: 0.5971452593803406, score: 0.7833333611488342
[Dev] epoch: 90, loss: 0.7792339324951172, score: 0.46666666865348816
[Train] epoch: 100, loss: 0.5763141512870789, score: 0.8166666626930237
[Dev] epoch: 100, loss: 0.7639160752296448, score: 0.46666666865348816
best accuracy performence has been updated: 0.46667 --> 0.53333
[Train] epoch: 110, loss: 0.5578767657279968, score: 0.824999988079071
[Dev] epoch: 110, loss: 0.7502836585044861, score: 0.5333333611488342
best accuracy performence has been updated: 0.53333 --> 0.60000
[Train] epoch: 120, loss: 0.5414095520973206, score: 0.824999988079071
[Dev] epoch: 120, loss: 0.7380689382553101, score: 0.6000000238418579
[Train] epoch: 130, loss: 0.5265832543373108, score: 0.8500000238418579
[Dev] epoch: 130, loss: 0.7270554304122925, score: 0.6000000238418579
[Train] epoch: 140, loss: 0.5131379961967468, score: 0.8500000238418579
[Dev] epoch: 140, loss: 0.7170670628547668, score: 0.6000000238418579
[Train] epoch: 150, loss: 0.5008670687675476, score: 0.875
[Dev] epoch: 150, loss: 0.707959771156311, score: 0.6000000238418579
best accuracy performence has been updated: 0.60000 --> 0.66667
[Train] epoch: 160, loss: 0.48960402607917786, score: 0.875
[Dev] epoch: 160, loss: 0.6996145844459534, score: 0.6666666865348816
[Train] epoch: 170, loss: 0.4792129397392273, score: 0.875
[Dev] epoch: 170, loss: 0.6919329166412354, score: 0.6666666865348816
[Train] epoch: 180, loss: 0.46958208084106445, score: 0.875
[Dev] epoch: 180, loss: 0.6848322749137878, score: 0.6000000238418579
[Train] epoch: 190, loss: 0.46061864495277405, score: 0.875
[Dev] epoch: 190, loss: 0.6782433390617371, score: 0.6000000238418579
可视化观察训练集与验证集的准确率变化情况。
import plot
plot.plot(runner,fig_name='linear-acc3.pdf')
使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率情况。
代码实现如下:
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
运行结果:
[Test] score/loss: 0.7333/0.5930
使用保存好的模型,对测试集中的数据进行模型预测,并取出1条数据观察模型效果。
代码实现如下:
# 预测测试集数据
logits = runner.predict(X_test)
# 观察其中一条样本的预测结果
pred = torch.argmax(logits[0]).numpy()
print("pred:",pred)
# 获取该样本概率最大的类别
label = y_test[0].numpy()
print("label:",label)
# 输出真实类别与预测类别
print("The true category is {0} and the predicted category is {1}".format(label, pred))
运行结果:
pred: 2
label: 2.0
The true category is 2.0 and the predicted category is 2
import torch
import os
from activation import softmax
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # 这里报错
torch.manual_seed(10) #设置随机种子
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
# 线性算子
class Linear(Op):
def __init__(self,input_size):
"""
输入:
- input_size:模型要处理的数据特征向量长度
"""
self.input_size = input_size
# 模型参数
self.params = {}
self.params['w'] = torch.randn(size=[self.input_size,1],dtype=torch.float32)
self.params['b'] = torch.zeros(size=[1],dtype=torch.float32)
def __call__(self, X):
return self.forward(X)
# 前向函数
def forward(self, X):
"""
输入:
- X: tensor, shape=[N,D]
注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
输出:
- y_pred: tensor, shape=[N]
"""
N,D = X.shape
if self.input_size==0:
return torch.full(size=[N,1], fill_value=self.params['b'])
assert D==self.input_size # 输入数据维度合法性验证
# 使用torch.matmul计算两个tensor的乘积
y_pred = torch.matmul(X,self.params['w'])+self.params['b']
return y_pred
#新增Softmax算子
class model_SR(Op):
def __init__(self, input_dim, output_dim):
super(model_SR, self).__init__()
self.params = {}
# 将线性层的权重参数全部初始化为0
self.params['W'] = torch.zeros(size=[input_dim, output_dim])
# self.params['W'] = paddle.normal(mean=0, std=0.01, shape=[input_dim, output_dim])
# 将线性层的偏置参数初始化为0
self.params['b'] = torch.zeros(size=[output_dim])
# 存放参数的梯度
self.grads = {}
self.X = None
self.outputs = None
self.output_dim = output_dim
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
self.X = inputs
# 线性算子
score = torch.matmul(self.X, self.params['W']) + self.params['b']
# Softmax函数
self.outputs = softmax(score)
return self.outputs
def backward(self, labels):
"""
输入:
- labels:真实标签,shape=[N, 1],其中N为样本数量
"""
# 计算偏导数
N =labels.shape[0]
labels = torch.nn.functional.one_hot(labels.to(torch.int64), self.output_dim)
self.grads['W'] = -1 / N * torch.matmul(self.X.t(), (labels-self.outputs))
self.grads['b'] = -1 / N * torch.matmul(torch.ones(size=[N]), (labels-self.outputs))
#新增多类别交叉熵损失
class MultiCrossEntropyLoss(Op):
def __init__(self):
self.predicts = None
self.labels = None
self.num = None
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
"""
输入:
- predicts:预测值,shape=[N, 1],N为样本数量
- labels:真实标签,shape=[N, 1]
输出:
- 损失值:shape=[1]
"""
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = 0
for i in range(0, self.num):
index = self.labels[i].int()
loss -= torch.log(self.predicts[i][index])
return loss / self.num
import torch
from abc import abstractmethod
def optimizer_lsm(model, X, y, reg_lambda=0):
"""
输入:
- model: 模型
- X: tensor, 特征数据,shape=[N,D]
- y: tensor,标签数据,shape=[N]
- reg_lambda: float, 正则化系数,默认为0
输出:
- model: 优化好的模型
"""
N, D = X.shape
# 对输入特征数据所有特征向量求平均
x_bar_tran = torch.mean(X,dim=0).t()
# 求标签的均值,shape=[1]
y_bar = torch.mean(y)
# torch.subtract通过广播的方式实现矩阵减向量
x_sub = torch.subtract(X,x_bar_tran)
# 使用torch.all判断输入tensor是否全0
if torch.all(x_sub==0):
model.params['b'] = y_bar
model.params['w'] = torch.zeros(size=[D])
return model
# torch.inverse求方阵的逆
tmp = torch.inverse(torch.matmul(x_sub.T,x_sub)+
reg_lambda*torch.eye(n = (D)))
w = torch.matmul(torch.matmul(tmp,x_sub.T),(y-y_bar))
b = y_bar-torch.matmul(x_bar_tran,w)
model.params['b'] = b
model.params['w'] = torch.squeeze(w,dim=-1)
return model
#新增优化器基类
class Optimizer(object):
def __init__(self, init_lr, model):
"""
优化器类初始化
"""
#初始化学习率,用于参数更新的计算
self.init_lr = init_lr
#指定优化器需要优化的模型
self.model = model
@abstractmethod
def step(self):
"""
定义每次迭代如何更新参数
"""
pass
#新增梯度下降法优化器
class SimpleBatchGD(Optimizer):
def __init__(self, init_lr, model):
super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
#参数更新
#遍历所有参数,按照公式(3.8)和(3.9)更新参数
if isinstance(self.model.params, dict):
for key in self.model.params.keys():
self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
import torch
def accuracy(preds, labels):
"""
输入:
- preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
- labels:真实标签,shape=[N, 1]
输出:
- 准确率:shape=[1]
"""
# 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
if preds.shape[1] == 1:
# 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
# 使用'torch.tensor()'将preds的数据类型转换为float32类型
preds = torch.as_tensor((preds >= 0.5),dtype=torch.float32)
else:
# 多分类时,使用'torch.argmax'计算最大元素索引作为类别
preds = torch.argmax(preds, dim=1).int()
return torch.mean(torch.as_tensor((preds == labels),dtype=torch.float32))
import torch
#新增RunnerV2类
class RunnerV2(object):
def __init__(self, model, optimizer, metric, loss_fn):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.metric = metric
#记录训练过程中的评价指标变化情况
self.train_scores = []
self.dev_scores = []
#记录训练过程中的损失函数变化情况
self.train_loss = []
self.dev_loss = []
def train(self, train_set, dev_set, **kwargs):
#传入训练轮数,如果没有传入值则默认为0
num_epochs = kwargs.get("num_epochs", 0)
#传入log打印频率,如果没有传入值则默认为100
log_epochs = kwargs.get("log_epochs", 100)
#传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
save_path = kwargs.get("save_path", "best_model.pdparams")
#梯度打印函数,如果没有传入则默认为"None"
print_grads = kwargs.get("print_grads", None)
#记录全局最优指标
best_score = 0
#进行num_epochs轮训练
for epoch in range(num_epochs):
X, y = train_set
#获取模型预测
logits = self.model(X)
#计算交叉熵损失
trn_loss = self.loss_fn(logits, y).item()
self.train_loss.append(trn_loss)
#计算评价指标
trn_score = self.metric(logits, y).item()
self.train_scores.append(trn_score)
#计算参数梯度
self.model.backward(y)
if print_grads is not None:
#打印每一层的梯度
print_grads(self.model)
#更新模型参数
self.optimizer.step()
dev_score, dev_loss = self.evaluate(dev_set)
#如果当前指标为最优指标,保存该模型
if dev_score > best_score:
self.save_model(save_path)
print(f"best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
best_score = dev_score
if epoch % log_epochs == 0:
print(f"[Train] epoch: {epoch}, loss: {trn_loss}, score: {trn_score}")
print(f"[Dev] epoch: {epoch}, loss: {dev_loss}, score: {dev_score}")
def evaluate(self, data_set):
X, y = data_set
#计算模型输出
logits = self.model(X)
#计算损失函数
loss = self.loss_fn(logits, y).item()
self.dev_loss.append(loss)
#计算评价指标
score = self.metric(logits, y).item()
self.dev_scores.append(score)
return score, loss
def predict(self, X):
return self.model(X)
def save_model(self, save_path):
torch.save(self.model.params, save_path)
def load_model(self, model_path):
self.model.params = torch.load(model_path)
import torch
#x为tensor
def softmax(X):
"""
输入:
- X:shape=[N, C],N为向量数量,C为向量维度
"""
x_max = torch.max(X, axis=1, keepdim=True).values#N,1
x_exp = torch.exp(X - x_max)
partition = torch.sum(x_exp, axis=1, keepdim=True)#N,1
return x_exp / partition
# 3.3 实践:基于Softmax回归完成鸢尾花分类任务
# 3.3.1 数据处理
# Iris数据集,也称为鸢尾花数据集,包含了3种鸢尾花类别(Setosa、Versicolour、Virginica),每种类别有50个样本,共计150个样本。
# 其中每个样本中包含了4个属性:花萼长度、花萼宽度、花瓣长度以及花瓣宽度,本实验通过鸢尾花这4个属性来判断该样本的类别。
from sklearn.datasets import load_iris
import pandas
import numpy as np
import torch
import op, metric, opitimizer, RunnerV2
# 对数据集中的缺失值或异常值等情况进行分析和处理,保证数据可以被模型正常读取。代码实现如下:
iris_features = np.array(load_iris().data, dtype=np.float32)
iris_labels = np.array(load_iris().target, dtype=np.int32)
print(pandas.isna(iris_features).sum())
print(pandas.isna(iris_labels).sum())
# 从输出结果看,鸢尾花数据集中不存在缺失值的情况。
# 通过箱线图直观的显示数据分布,并观测数据中的异常值。
import matplotlib.pyplot as plt #可视化工具
# 箱线图查看异常值分布
def boxplot(features):
feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
# 连续画几个图片
plt.figure(figsize=(5, 5), dpi=200)
# 子图调整
plt.subplots_adjust(wspace=0.6)
# 每个特征画一个箱线图
for i in range(4):
plt.subplot(2, 2, i+1)
# 画箱线图
plt.boxplot(features[:, i],
showmeans=True,
whiskerprops={"color":"#E20079", "linewidth":0.4, 'linestyle':"--"},
flierprops={"markersize":0.4},
meanprops={"markersize":1})
# 图名
plt.title(feature_names[i], fontdict={"size":5}, pad=2)
# y方向刻度
plt.yticks(fontsize=4, rotation=90)
plt.tick_params(pad=0.5)
# x方向刻度
plt.xticks([])
plt.savefig('ml-vis.pdf')
plt.show()
boxplot(iris_features)
# 从输出结果看,数据中基本不存在异常值,所以不需要进行异常值处理。
# 3.3.1.3 数据读取
# 加载数据集
def load_data(shuffle=True):
'''
加载鸢尾花数据
输入:
- shuffle:是否打乱数据,数据类型为bool
输出:
- X:特征数据,shape=[150,4]
- y:标签数据, shape=[150]
'''
# 加载原始数据
X = np.array(load_iris().data, dtype=np.float32)
y = np.array(load_iris().target, dtype=np.float32)
X = torch.tensor(X)
y = torch.tensor(y)
# 数据归一化
X_min = torch.min(X, dim=0).values
X_max = torch.max(X, dim=0).values
X = (X-X_min) / (X_max-X_min)
# 如果shuffle为True,随机打乱数据
if shuffle:
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
return X, y
# 固定随机种子
torch.manual_seed(102)
num_train = 120
num_dev = 15
num_test = 15
X, y = load_data(shuffle=True)
print("X shape: ", X.shape, "y shape: ", y.shape)
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
# 打印X_train和y_train的维度
print("X_train shape: ", X_train.shape, "y_train shape: ", y_train.shape)
# 打印前5个数据的标签
print(y_train[:5])
# 3.3.2 模型构建
# 使用Softmax回归模型进行鸢尾花分类实验,将模型的输入维度定义为4,输出维度定义为3。代码实现如下:
# 输入维度
input_dim = 4
# 类别数
output_dim = 3
# 实例化模型
model = op.model_SR(input_dim=input_dim, output_dim=output_dim)
# 3.3.3 模型训练
# 实例化RunnerV2类,使用训练集和验证集进行模型训练,共训练80个epoch,
# 其中每隔10个epoch打印训练集上的指标,并且保存准确率最高的模型作为最佳模型。代码实现如下:
# 学习率
lr = 0.2
# 梯度下降法
optimizer = opitimizer.SimpleBatchGD(init_lr=lr, model=model)
# 交叉熵损失
loss_fn = op.MultiCrossEntropyLoss()
# 准确率
metric2 = metric.accuracy
# 实例化RunnerV2
runner = RunnerV2.RunnerV2(model, optimizer, metric2, loss_fn)
# # 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=200, log_epochs=10, save_path="best_model.pdparams")
import plot
plot.plot(runner,fig_name='linear-acc3.pdf')
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
# 预测测试集数据
logits = runner.predict(X_test)
# 观察其中一条样本的预测结果
pred = torch.argmax(logits[0]).numpy()
print("pred:",pred)
# 获取该样本概率最大的类别
label = y_test[0].numpy()
print("label:",label)
# 输出真实类别与预测类别
print("The true category is {0} and the predicted category is {1}".format(label, pred))
首先,我们看一下学习率的影响,这里我们循环一下(为了方便观察,内部代码有些许更改):
# 学习率
lr2 = 0.2
for i in range(8):
lr = lr2 * i
# 梯度下降法
optimizer = opitimizer.SimpleBatchGD(init_lr=lr, model=model)
# 交叉熵损失
loss_fn = op.MultiCrossEntropyLoss()
# 准确率
metric2 = metric.accuracy
# 实例化RunnerV2
runner = RunnerV2.RunnerV2(model, optimizer, metric2, loss_fn)
# # 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=200, log_epochs=10, save_path="best_model.pdparams")
plot.plot(runner,fig_name='linear-accx.pdf',x = lr)
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
运行结果(lr为学习率):
[Test] score/loss: 0.2000/1.0986
[Test] score/loss: 0.7333/0.5930
[Test] score/loss: 0.8667/0.4474
[Test] score/loss: 0.8667/0.4465
[Test] score/loss: 0.8667/0.4452
[Test] score/loss: 0.9333/0.3147
[Test] score/loss: 0.9333/0.3142
[Test] score/loss: 0.9333/0.3137
通过调节学习率,我们发现,学习率过低和过高都会造成训练模型变差,当训练模型没有达到预取效果时,我们可以通过调整学习率来改变训练模型,让其向着预期效果学习
下面,我们来调节一下训练轮数:
# 学习率
lr = 0.2
num_epochs2 = 200
for i in range(1,8):
num_epochs = num_epochs2 * i
# 梯度下降法
optimizer = opitimizer.SimpleBatchGD(init_lr=lr, model=model)
# 交叉熵损失
loss_fn = op.MultiCrossEntropyLoss()
# 准确率
metric2 = metric.accuracy
# 实例化RunnerV2
runner = RunnerV2.RunnerV2(model, optimizer, metric2, loss_fn)
# # 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=num_epochs, log_epochs=10, save_path="best_model.pdparams")
plot.plot(runner,fig_name='linear-accx.pdf',x = num_epochs)
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
运行结果:
[Test] score/loss: 0.9333/0.3125
[Test] score/loss: 0.8667/0.4478
[Test] score/loss: 0.8667/0.4475
[Test] score/loss: 0.8667/0.4472
[Test] score/loss: 0.9333/0.3150
[Test] score/loss: 0.9333/0.3149
[Test] score/loss: 0.9333/0.3149
通过调整训练轮数我们发现,当训练轮数少时,误差较大;当训练轮数过多时,误差为0,过拟合了。当我们训练模型差时,可以提高训练轮数;当我们训练模型太好的时候,我们有可能过拟合了。
注: 训练轮数的调节不要从0开始
通过该章的学习,我学会使用Softmax回归和Logistic回归的使用,和实践的应用,了解了训练轮数和学习率对训练模型的影响。加深了实践过程步骤,也更加深刻的了解了深度学习的过程。
内容太多了,如果太多了,可能会没有耐心看完,而且查找也不是很方便。
这里我分成了上中下三篇,分别为基于Logistic回归的二分类任务(上篇),基于Softmax回归的多分类任务(中篇),实践:基于Softmax回归完成鸢尾花分类任务(下篇)。
上篇:深度学习 第3章线性分类 实验四 pytorch实现 Logistic回归 上篇
中篇:深度学习 第3章线性分类 实验四 pytorch实现 Softmax回归 中篇
创作不易,如果对你有帮助,求求你给我个赞!!!
点赞 + 收藏 + 关注!!!
如有错误与建议,望告知!!!(将于下篇文章更正)
请多多关注我!!!谢谢!!!