猫狗大战pytorch实现

目录

评估函数,计算 图片多分类的准确率 topK

保存准确率信息

完整代码 


评估函数,计算 图片多分类的准确率 topK

## topk的准确率计算
def accuracy(output, label, topk=(1,)):
    maxk = max(topk) 
    batch_size = label.size(0)

    # 获取前K的索引
    _, pred = output.topk(maxk, 1, True, True) #使用topk来获得前k个的索引
    pred = pred.t() # 进行转置
    # eq按照对应元素进行比较 view(1,-1) 自动转换到行为1,的形状, expand_as(pred) 扩展到pred的shape
    # expand_as 执行按行复制来扩展,要保证列相等
    correct = pred.eq(label.view(1, -1).expand_as(pred)) # 与正确标签序列形成的矩阵相比,生成True/False矩阵
#     print(correct)

    rtn = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0) # 前k行的数据 然后平整到1维度,来计算true的总个数
        rtn.append(correct_k.mul_(100.0 / batch_size)) # mul_() ternsor 的乘法  正确的数目/总的数目 乘以100 变成百分比
    return rtn

保存准确率信息

class AvgrageMeter(object):

    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt

完整代码 

import torch
import torchvision.transforms as transform
import cv2
from torch.utils.data import Dataset, DataLoader, random_split
import os
from PIL import Image
from tqdm import tqdm

data_path = r'dogs-vs-cats/train'
"""
# os.listdir 会将 本目录下所有的文件的名字 添加到列表中
path_list =  os.listdir(path)
print(path_list)
"""

# 定义 数据 生成函数
#
class myData(Dataset):
    def __init__(self, data_path):
        self.data_path = data_path
        self.transform = transform.Compose(
            [
                transform.Resize(size=(224, 224)),
                transform.ToTensor(),
                transform.Normalize(mean=[0.5, 0.5 ,0.5], std=[0.5, 0.5, 0.5])
            ]
        )
        self.path_list = os.listdir(data_path)

    def __getitem__(self, idx): # 作用就是 将 图片转化为张量 然后打标签 返回 数据和标签
        img_path = self.path_list[idx]
        abs_img_path = os.path.join(self.data_path, img_path)  #拼接成绝对地址  会加入/
        img = Image.open(abs_img_path)
        img = self.transform(img)

        #打标签
        if img_path.split('.')[0] == 'dog':  #狗是1   猫是0
            label = 1
        else:
            label = 0

        label = torch.as_tensor(label, dtype=torch.int64)
        return img, label

    def __len__(self):
        return len(self.path_list)
"""
# 测试
train_data = myData(data_path)

for i, item in enumerate(tqdm(train_data)):
    print(item[1])
"""

#划分数据集
def data_sp(data_set):
    x = int(len(data_set)*0.8)
    y = len(data_set) - x
    train_d, val_d = random_split(data_set, [x, y])
    return train_d, val_d

data = myData(data_path)
train_d, val_d = data_sp(data)
# 使用dataloader 加载数据 成迭代器 打乱,batch_size等

trainloader = DataLoader(train_d, shuffle=True, batch_size=128)
valloader = DataLoader(val_d, shuffle=True, batch_size=128)

"""
# 这样 每轮输出 128个 batch_size 为128, 每个循环 训练18个数据
for dat in trainloader:
    print(dat)
    break
"""

# 搭建网络  两种方法 先使用 残差网络, 再自己定义一个试一试
from torchvision import models
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
"""
#加载 模型库中的残差网络
resnet18 = models.resnet18(pretrained=True)
resnet18.fc = nn.Linear(512, 2)
model = resnet18
"""


#搭建一个自己的网络
# 卷积 池化 卷积 池化  三个全连接层  中间用relu函数
class myNet(nn.Module):
    def __init__(self):
        super(myNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 8, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(8, 16, kernel_size=3, stride=1, padding=1)
        #self.relu = F.relu()
        # 全连接层之前 需要展开成1维  两次池化 224/2/2 = 56
        self.fc1 = nn.Linear(16*56*56, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64 , 2)  #输出2维  两个标签

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        #xia一卷积池化
        x = self.pool(F.relu(self.conv2(x)))
        # 展开 进入全连接层
        x = x.view(-1, 16*56*56)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)

        return x

model = myNet()

# 保存和更新准确率的结果
class AverageMeter(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt

# 再多分类问题中, topk准确率是 只要正确标签 的概率 在最大的k个概率中即为正确
def accuracy(output, label, topk=(1,)):
    maxk = max(topk)
    batch_size = label.size(0) 
    # get top-k index
    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t() # transpose
    correct = pred.eq(label.view(1, -1).expand_as(pred))
    rtn = []
    for k in topk:
        correct_k = correct[:k].contiguous().view(-1).float().sum(0)
        rtn.append(correct_k.mul_(100.0 / batch_size))
    return rtn

#下面定义优化器和损失函数
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
epochs = 10
model = model.to(device) # gpu


#下面进行训练网网络
for epoch in range(epochs):
    model.train()
    ac = AverageMeter()
    train_loss = 0.0
    # 这两句 是 再训练时 更能把握进度
    trainloader = tqdm(trainloader)
    trainloader.set_description('[%s%04d/%04d]' % ('Epoch:', epoch + 1, epochs))
    for i, data in enumerate(trainloader, 0):
        x, labels = data[0].to(device), data[1].to(device)
        #清空 上一个 batch的梯度
        optimizer.zero_grad()
        pred = model(x)
        loss = criterion(pred, labels)
        loss.backward()
        optimizer.step()
        # 计算准确率
        acc1, acc2 = accuracy(pred, labels, topk=(1, 2))
        # accuracy 只有一个返回值,
        n = x.size(0)
        ac.update(acc1.item(), n)
        train_loss += loss.item()
        #可视化
        postfix = {'train_loss': '%.6f' % (train_loss / (i + 1)), 'train_acc': '%.6f' % ac.avg}
        trainloader.set_postfix(log=postfix)

    # 验证集验证
    model.eval()
    with torch.no_grad():
        val_ac = AverageMeter()
        valloader = tqdm(valloader)
        valloader.set_description('[%s%04d/%04d]' % ('Epoch:', epoch + 1, epochs))
        val_loss = 0.0
        for i, data in enumerate(valloader, 0):
            val_x, val_labels = data[0].to(device), data[1].to(device)
            val_pred = model(val_x)
            loss = criterion(val_pred, val_labels)

            prec1, prec2 = accuracy(val_pred, val_labels, topk=(1, 2))
            n = val_x.size(0)  # batch_size=32
            val_ac.update(prec1.item(), n)
            val_loss += loss.item()
            postfix = {'validation_loss': '%.6f' % (val_loss / (i + 1)), 'validation_acc': '%.6f' % val_ac.avg}
            valloader.set_postfix(log=postfix)


#torch.save(model.state_dict(), 'model.pth')
print("训练完成")


"""
#测试 成果
test_path = r'dogs-vs-cats/test1/148.jpg'
image = Image.open(test_path)
Tr = transform.Resize([224, 224])
img = Tr(image)    #调整大小
img = transform.ToTensor()(img) #转化为tensor
img = transform.Normalize(mean=[0.5, 0.5 ,0.5], std=[0.5, 0.5, 0.5])(img)  #标准化

mo = myNet()
state_dict = torch.load('model.pth')
mo.load_state_dict(state_dict)

oo = mo(img)
softmax_func = nn.Softmax(dim=1)
res = softmax_func(oo)
if res[:, 0] > 0.5:
    animal = "Cat"
else:
    animal = "Dog"

i = cv2.imread(test_path)
cv2.putText(i, animal, (30, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 3)
cv2.imshow('cats vs dogs', i)
cv2.waitKey(0)
cv2.destroyAllWindows()

"""

你可能感兴趣的:(python,深度学习,机器学习)