pytorch
net = net_now()
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
net.load_state_dict(state_dict, strict=True)
#net.cuda()
net.eval()
print("==========load success===!!")
T = 1e-8
total_weight = 0
total_weight_avail = 0
for name,parameters in net.named_parameters():
if "bias" in name:
continue
print(name,':',parameters.size())
weight = parameters.detach().numpy()
weights_np = abs(weight)
total_weight += weights_np.size
tmp = weights_np > T
# tmp = weights_np != 0
total_weight_avail += tmp.sum()
ratio_zero = (1 - (tmp.sum() * 1.0 / weights_np.size))
print("name=", name, " ratio_zero=", ratio_zero)
print("ratio_conv_avail_weight=", total_weight_avail * 1.0 / total_weight, " ratio_conv_not_avail_weight=",
1 - total_weight_avail * 1.0 / total_weight)
exit(0)
caffe
net.forward(**input_dict)
##################################
#####bn
print("==========>>bn"*5)
T = 1e-5
for layer_para_name, para in net.params.items():
if "bn" in layer_para_name:
weights_np = abs(para[3].data) # para[3]是λ
tmp = weights_np > T
ratio_zero = (1 - (tmp.sum() * 1.0 / weights_np.size))
print("layer_para_name=", layer_para_name, " ratio_zero=", ratio_zero)
####conv
print("==========>>conv" * 5, " --->T=",T)
total_weight = 0
total_weight_avail = 0
for layer_para_name, para in net.params.items():
if "bn" in layer_para_name or "scale" in layer_para_name or "Scale" in layer_para_name or "bias" in layer_para_name:
continue
# if "conv1_1" == layer_para_name:
# # Statistics_weight(layer_para_name, abs(para[0].data))
#
# Statistics_weight("/media/algo/data_1/project/oof/oof_sparse/caffe-jacinto/0000/deply/show_L2", layer_para_name, abs(para[0].data))
# a = 0
# Statistics_weight("/media/algo/data_1/project/oof/oof_sparse/caffe-jacinto/0000/deply/show/0930/0930_L1+sprse", "L1+sparse", layer_para_name, abs(para[0].data))
weights_np = abs(para[0].data) # para[0]weight para[1]bias 2 128 3 3
weights_np_0 = weights_np[0]
tmp_2 = weights_np <= 0.2
ratio_123 = tmp_2.sum() * 1.0 / weights_np.size
total_weight += weights_np.size
tmp = weights_np > T
# tmp = weights_np != 0
total_weight_avail += tmp.sum()
ratio_zero = (1 - (tmp.sum() * 1.0 / weights_np.size))
print("layer_para_name=", layer_para_name, " ratio_zero=", ratio_zero)
print("ratio_conv_avail_weight=", total_weight_avail * 1.0 / total_weight, " ratio_conv_not_avail_weight=",
1 - total_weight_avail * 1.0 / total_weight)
##################################