在Java中计算一元线性回归

文章目录

    • 1.前言
    • 2.内容
      • 2.1 定义实体类
      • 2.2 回归线实现类
      • 2.3 线性回归测试类
    • 3. 总结

1.前言

最近公司项目有需要用到在Java中计算一元线性回归的功能,网上找了很久,发现一篇不错的文章,但是原文的方法计算出来和Excel计算的最终结果总是有一点的误差,所以我在原文的代码上做了一点修改,最终的结果和Excel计算出来的基本没有误差了。下面是原文地址:

原文链接

2.内容

2.1 定义实体类

定义一个DataPoint类,对X和Y坐标点进行封装:

/**
 * Description : Java实现一元线性回归的算法,座标点实体类,(可实现统计指标的预测)
 */
public class DataPoint {

    /** the x value */
    public double x;

    /** the y value */
    public double y;

    /**
     * Constructor.
     * 
     * @param x
     *            the x value
     * @param y
     *            the y value
     */
    public DataPoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}

2.2 回归线实现类

import java.math.BigDecimal;
import java.util.ArrayList;

/**
 * 

* Linear Regression
* 通过构建一个集合的回归线来演示线性回归的数据点 *

* require DataPoint.java,RegressionLine.java * *

* 为了计算对于给定数据点的最小方差回线,需要计算SumX,SumY,SumXX,SumXY; (注:SumXX = Sum (X^2)) *

* 回归直线方程如下: f(x)=a1x+a0 *

* 斜率和截距的计算公式如下:
* n: 数据点个数 *

* a1=(n(SumXY)-SumX*SumY)/(n*SumXX-(SumX)^2)
* a0=(SumY - SumY * a1)/n
* (也可表达为a0=averageY-a1*averageX) * *

* 画线的原理:两点成一直线,只要能确定两个点即可
* 第一点:(0,a0) 再随意取一个x1值代入方程,取得y1,连结(0,a0)和(x1,y1)两点即可。 * 为了让线穿过整个图,x1可以取横坐标的最大值Xmax,即两点为(0,a0),(Xmax,Y)。如果y=a1*Xmax+a0,y大于 * 纵坐标最大值Ymax,则不用这个点。改用y取最大值Ymax,算得此时x的值,使用(X,Ymax), 即两点为(0,a0),(X,Ymax) * *

* 拟合度计算:(即Excel中的R^2) *

* *R2 = 1 - E *

* 误差E的计算:E = SSE/SST *

* SSE=sum((Yi-Y)^2) SST=sumYY - (sumY*sumY)/n; *

*/ public class RegressionLine // implements Evaluatable { /** sum of x */ private double sumX; /** sum of y */ private double sumY; /** sum of x*x */ private double sumXX; /** sum of x*y */ private double sumXY; /** sum of y*y */ private double sumYY; /** sum of yi-y */ private double sumDeltaY; /** sum of sumDeltaY^2 */ private double sumDeltaY2; /** 误差 */ private double sse; private double sst; private double E; private String[] xy; private ArrayList<String> listX; private ArrayList<String> listY; private int XMin, XMax, YMin, YMax; /** 截距 a0 */ private double a0; /** 斜率 a1 */ private double a1; /** 数据点个数 */ private int pn; /** true if coefficients valid */ private boolean coefsValid; /** * 构造方法. */ public RegressionLine() { XMax = 0; YMax = 0; pn = 0; xy = new String[2]; listX = new ArrayList<String>(); listY = new ArrayList<String>(); } /** * Constructor. * * @param data * the array of data points */ public RegressionLine(DataPoint data[]) { pn = 0; xy = new String[2]; listX = new ArrayList<String>(); listY = new ArrayList<String>(); for (int i = 0; i < data.length; ++i) { addDataPoint(data[i]); } } /** * Return the current number of data points. * * @return the count */ public int getDataPointCount() { return pn; } /** * Return the coefficient a0. * * @return the value of a0 */ public double getA0() { validateCoefficients(); return a0; } /** * Return the coefficient a1. * * @return the value of a1 */ public double getA1() { validateCoefficients(); return a1; } /** * Return the sum of the x values. * * @return the sum */ public double getSumX() { return sumX; } /** * Return the sum of the y values. * * @return the sum */ public double getSumY() { return sumY; } /** * Return the sum of the x*x values. * * @return the sum */ public double getSumXX() { return sumXX; } /** * Return the sum of the x*y values. * * @return the sum */ public double getSumXY() { return sumXY; } public double getSumYY() { return sumYY; } public int getXMin() { return XMin; } public int getXMax() { return XMax; } public int getYMin() { return YMin; } public int getYMax() { return YMax; } /** * 添加一个新的数据点:更新总和. * * @param dataPoint * the new data point */ public void addDataPoint(DataPoint dataPoint) { sumX += dataPoint.x; sumY += dataPoint.y; sumXX += dataPoint.x * dataPoint.x; sumXY += dataPoint.x * dataPoint.y; sumYY += dataPoint.y * dataPoint.y; if (dataPoint.x > XMax) { XMax = (int)dataPoint.x; } if (dataPoint.y > YMax) { YMax = (int)dataPoint.y; } // 把每个点的具体坐标存入ArrayList中,备用 xy[0] = dataPoint.x + ""; xy[1] = dataPoint.y + ""; if (dataPoint.y != 0) { System.out.print(xy[0] + ","); System.out.println(xy[1]); try { // System.out.println("n:"+n); listX.add(pn, xy[0]); listY.add(pn, xy[1]); } catch (Exception e) { e.printStackTrace(); } /* * System.out.println("N:" + n); System.out.println("ArrayList * listX:"+ listX.get(n)); System.out.println("ArrayList listY:"+ * listY.get(n)); */ } ++pn; coefsValid = false; } /** * 返回回归线函数在x处的值. (Implementation of * Evaluatable.) * * @param x * the value of x * @return the value of the function at x */ public double at(double x) { if (pn < 2) return Float.NaN; validateCoefficients(); return a0 + a1 * x; } /** * Reset. */ public void reset() { pn = 0; sumX = sumY = sumXX = sumXY = 0; coefsValid = false; } /** * Validate the coefficients. 计算方程系数 y=ax+b 中的a */ private void validateCoefficients() { if (coefsValid) return; if (pn >= 2) { double xBar = sumX / pn; double yBar = sumY / pn; a1 = ((pn * sumXY - sumX * sumY) / (pn * sumXX - sumX * sumX)); a0 = (yBar - a1 * xBar); a0 = round(a0, 4); a1 = round(a1, 4); } else { a0 = a1 = Float.NaN; } coefsValid = true; } /** * 返回误差 */ public double getR() { // 遍历这个list并计算分母 for (int i = 0; i < pn - 1; i++) { double Yi = Double.parseDouble(listY.get(i)); double Y = at(Double.parseDouble(listX.get(i).toString())); double deltaY = Yi - Y; double deltaY2 = deltaY * deltaY; // System.out.println("Yi:" + Yi); // System.out.println("Y:" + Y); // System.out.println("deltaY:" + deltaY); // System.out.println("deltaY2:" + deltaY2); sumDeltaY2 += deltaY2; // System.out.println("sumDeltaY2:" + sumDeltaY2); } sst = sumYY - (sumY * sumY) / pn; // System.out.println("sst:" + sst); E = 1 - sumDeltaY2 / sst; return round(E, 4); } // 用于实现精确的四舍五入 public double round(double v, int scale) { if (scale < 0) { throw new IllegalArgumentException("比例必须是一个正整数或零"); } BigDecimal b = new BigDecimal(Double.toString(v)); BigDecimal one = new BigDecimal("1"); return b.divide(one, scale, BigDecimal.ROUND_HALF_UP).doubleValue(); } public float round(float v, int scale) { if (scale < 0) { throw new IllegalArgumentException("比例必须是一个正整数或零"); } BigDecimal b = new BigDecimal(Double.toString(v)); BigDecimal one = new BigDecimal("1"); return b.divide(one, scale, BigDecimal.ROUND_HALF_UP).floatValue(); } }

2.3 线性回归测试类

public class LinearRegression {

    public static void main(String args[]) {
        RegressionLine line = new RegressionLine();
        // 两组数据,可用来测试和Excel对比
        double[] x = {0, 10, 50, 100};
        double[] y = {0.1, 1.03, 5.23, 9.906};
//        double[] x = {0.1, 0.2, 0.5, 1, 5, 10};
//        double[] y = {0.79, 1.84, 3.45, 5.08, 25.51, 50.36};
        
        for (int i = 0; i < x.length; i++) {
            line.addDataPoint(new DataPoint(x[i], y[i]));
        }

        printSums(line);
        printLine(line);
    }

    /**
     * 打印计算出来的总数
     * @param line 回归线
     */
    private static void printSums(RegressionLine line) {
        System.out.println("\n数据点个数 n = " + line.getDataPointCount());
        System.out.println("\nSum x  = " + line.getSumX());
        System.out.println("Sum y  = " + line.getSumY());
        System.out.println("Sum xx = " + line.getSumXX());
        System.out.println("Sum xy = " + line.getSumXY());
        System.out.println("Sum yy = " + line.getSumYY());

    }

    /**
     * 打印回归线函数
     * @param line 回归线
     *            
     */
    private static void printLine(RegressionLine line) {
        System.out.println("\n回归线公式:  y = " + line.getA1() + "x + " + line.getA0());
        System.out.println("误差:     R^2 = " + line.getR());
    }
}

测试类运行结果:

0.0,0.1
10.0,1.03
50.0,5.23
100.0,9.906

数据点个数 n = 4

Sum x = 160.0
Sum y = 16.266000000000002
Sum xx = 12600.0
Sum xy = 1262.4
Sum yy = 126.552636

回归线公式: y = 0.0987x + 0.1197
误差: R^2 = 0.9994

3. 总结

对于熟悉线性回归的人来说很好理解,后续我也还会持续使用,如果错漏欢迎指正。

你可能感兴趣的:(java,java)