- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- Python 逻辑回归:开启分类问题的智慧之门
海燕李
python逻辑回归开发语言scikit-learn
一、逻辑回归的魅力之源在机器学习的璀璨星空中,逻辑回归宛如一颗耀眼的明星,照亮了分类问题的求解之路。它之所以备受青睐,是因为其独特的理论架构和广泛的适用性。逻辑回归虽名为“回归”,但本质上是一种用于分类的强大算法。它巧妙地将线性关系与分类任务相结合,通过构建一个概率模型,来预测样本属于某个类别的可能性。这种对概率的估计能力,使得它在众多领域中脱颖而出。例如,在医疗诊断中,可预测患者是否患有某种疾病
- 机器学习算法-逻辑回归模型在交通领域的应用
是一个Bug
机器学习算法逻辑回归
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档逻辑回归模型在交通领域的应用:车流数量和平均速度之间的关系前言结果分析代码分析逻辑回归可视化:交通拥堵预测的动态建模过程一、交通数据生成与预处理二、逻辑回归核心算法实现三、动态可视化:决策边界的演变过程四、特征标准化与模型评估五、实验结果与模型解读六、拓展思考:逻辑回归的局限性结语:从代码到交通智能前言紧接上文的逻辑回归原理分析讲一讲
- [KO机器学习] Day2 特征工程:数据预处理:序号编码、独热编码、二进制编码
码农男孩
机器学习机器学习人工智能计算机视觉算法支持向量机
场景描述类别型特征(categoricalfeature)主要是指性别(男女)、血型(A,B,AB,O)等只在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。在对数据进行预处理时,应该怎么样处理类别型特征?难度:★☆☆☆☆①序号编码OrdinalEnco
- 【人工智能-练习】三个案例搞明白机器学习中的三大任务:分类、回归、聚类
若北辰
人工智能分类回归
文章目录一、分类任务结果代码解释导入必要的库配置字体生成模拟数据集拆分数据集数据标准化逻辑回归分类器预测并计算准确率绘制分类效果定义决策边界绘制函数绘制训练集和测试集的分类效果二、回归结果代码解释1.导入库2.设置Matplotlib的字体3.生成模拟数据集4.将数据集划分为训练集和测试集5.数据标准化6.定义线性回归模型7.预测8.计算均方误差(MSE)9.绘制回归预测效果图训练集上的预测效果测
- 用Tensorflow进行线性回归和逻辑回归(一)
lishaoan77
tensorflowtensorflow线性回归逻辑回归
这一章告诉你如何用TensorFlow构建简单的机器学习系统。第一部分回顾构建机器学习系统的基础特别是讲函数,连续性,可微性。接着我们介绍损失函数,然后讨论机器学习归根于找到复杂的损失函数最小化的点的能力。我们然后讲梯度下降,解释它如何使损失最小。然后简单的讨论自动微分的算法思想。第二节侧重于介绍基于这些数学思想的TensorFlow概念。包括placeholders,scopes,optimiz
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 基于Tensorflow的线性回归
用Tensorflow求逆矩阵用Tensorflow实现矩阵分解用Tensorflow实现线性回归理解线性回归中的损失函数用Tensorflow实现戴明回归(DemingRegression)用Tensorflow实现Lasson回归和岭回归(RidgeRegression)用Tensorflow实现弹性网络回归(ElasticNetRegression)用Tensorflow实现逻辑回归文章目录
- Python机器学习小项目实战:随机森林算法实现信用卡欺诈检测
码上研习
Python机器学习小项目实战机器学习算法python
1.引言在之前的机器学习之旅中,我们已经探索了许多强大的算法,例如逻辑回归、支持向量机、决策树等等。每种算法都有其独特的优势和适用场景,但它们也存在一些共同的局限性。单个模型往往难以完美地捕捉复杂的数据模式,容易受到过拟合或欠拟合的影响,并且在面对噪声数据时显得脆弱。想象一下,你正在尝试预测股票价格的涨跌。你可以使用逻辑回归,但是逻辑回归假设特征之间是线性相关的,这可能无法捕捉股票市场中的复杂非线
- 逻辑回归中的损失函数:交叉熵损失详解与推导
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶逻辑回归算法机器学习ai
逻辑回归中的损失函数:交叉熵损失详解与推导关键词:逻辑回归、交叉熵损失、损失函数、二分类、多分类、极大似然估计、梯度下降摘要:本文深入解析逻辑回归中核心的交叉熵损失函数,从信息论基础出发,逐步推导二分类与多分类场景下的损失函数形式,结合极大似然估计揭示其理论本质。通过Python代码实现损失函数计算与梯度推导,辅以实战案例演示完整训练流程。同时对比均方误差等其他损失函数,阐释交叉熵在分类问题中的独
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 机器学习——numpy逻辑回归(手写数字识别)
非零因子
机器学习机器学习
二分类——识别1、7importnumpyasnpimportstructimportmatplotlib.pyplotaspltimportosfromPILimportImagefromsklearn.utilsimportgen_batchesnp.random.seed(2022)train_image_file='./案例/05-手写数字识别/train-images-idx3-ubyt
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 机器学习专栏(36):逻辑回归与Softmax回归全解析(附完整代码与可视化)
Sonal_Lynn
人工智能专题机器学习逻辑回归回归
目录一、逻辑回归:概率世界的"温度计"1.1核心原理:从线性到概率的魔法转换1.2Sigmoid函数:概率转换的核心引擎1.3实战案例:鸢尾花二分类二、模型训练:损失函数的艺术2.1对数损失函数解析2.2正则化实战技巧三、Softmax回归:多分类的终极武器3.1数学原理深度解析3.2多分类实战技巧四、工业级应用指南4.1特征工程黄金法则4.2模型评估矩阵4.3超参数调优模板五、避坑指南:常见误区
- 逻辑回归暴力训练预测金融欺诈
CHEN_RUI_2200
人工智能逻辑回归金融大数据
简述「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度原始论文目前搜不到了,当时这篇论文的要点就提到,通过特征增广,只要是特征就用起来,使用最简单的逻辑回归模型来提高预测的精确度。在工程上会攒出惊人数量级的特征维度,但是效果也是很明显的简单
- Python实现逻辑回归模型:处理分类问题的经典方案
在机器学习领域,逻辑回归(LogisticRegression)虽名为“回归”,实则是解决分类问题的经典算法。它以简洁的数学原理、高效的计算性能和良好的可解释性,广泛应用于信用风险评估、疾病诊断预测、用户行为分析等场景。本文将深入解析逻辑回归的核心原理,并通过Python代码完整实现从数据准备、模型构建到评估的全流程。一、逻辑回归模型原理概述逻辑回归基于线性回归模型,通过引入逻辑函数(Logist
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- mnist手写数字识别python_Python利用逻辑回归模型解决MNIST手写数字识别问题详解...
weixin_39994438
本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题。分享给大家供大家参考,具体如下:1、MNIST手写识别问题MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几。可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件。%matplotlibinlineimporttensor
- 逻辑回归损失函数推导
denghong637573
数据结构与算法人工智能
引言假设今天希望将机器学习应用到医院中去,比如对于某一个患了心脏病的病人,求他3个月之后病危的概率。那么我们该选择哪一个模型,或者可以尝试已经学过的线性回归?但是很遗憾的是,如果我们要利用线性回归,我们收集到的资料中应当包含病人3个月后病危的概率。这在实际中是很难得到的,因为对于一个患病的病人,你只能知道他3个月后到底是病危或者存活。所以线性回归并不适用这种场景。logistic函数上面提到我们最
- 机器学习与深度学习04-逻辑回归02
my_q
机器学习与深度学习机器学习深度学习逻辑回归
目录前文回顾6.正则化在逻辑回归中的作用7.特征工程是什么8.逻辑回归的预测结果如何9.什么是ROC曲线和AUC值10.如何处理类不平衡问题11.什么是交叉验证前文回顾上一篇文章地址:链接6.正则化在逻辑回归中的作用逻辑回归中,正则化是一种用于控制模型复杂度的技术,它对模型的参数进行约束,以防止过拟合。正则化通过在损失函数中引入额外的正则化项来实现,这些正则化项对参数的大小进⾏惩罚,逻辑回归中常用
- 机器学习多分类逻辑回归和二分类神经网络实践
木尘152132
机器学习分类逻辑回归
1、2-17实现多分类逻辑回归代码#2-17实现多分类逻辑回归importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=5400#迭代次数learning_rate=0.1#学习率m_train=200#训练样本数量#整数索引值转one-hot向量defindex2onehot(index,classes)
- 计算机视觉(图像算法工程师)学习路线
陳錄生
计算机视觉学习人工智能
计算机视觉学习路线Python基础常量与变量列表、元组、字典、集合运算符循环条件控制语句函数面向对象与类包与模块Numpy+Pandas+Matplotlibnumpy机器学习回归问题线性回归Lasso回归Ridge回归多项式回归决策树回归AdaBoostGBDT随机森林回归分类问题逻辑回归决策树ID3-信息增益C4.5-信息增益率随机森林SVMNaiveBayes聚类问题K-MeansMDSCA
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- 线性回归原理推导与应用(七):逻辑回归原理与公式推导
Smilecoc
机器学习Python数据分析线性回归逻辑回归算法
逻辑回归是一种分类算法,常用于二分类,也就是得出的结果为是和不是,例如通过各种因素判断一个人是否生病,信用卡是否违约等。逻辑回归在社会和自然科学中应用非常广泛,前置知识线性回归逻辑回归的底层方法就是线性回归,所以需要对线性回归有基本的了解。具体的一元,多元线性回归原理在之前的文章中已经讲过,可以查看之前的文章https://blog.csdn.net/qq_42692386/article/det
- 11.19 机器学习-岭回归+拉索回归+逻辑回归
Seeklike
机器学习回归逻辑回归
#欠拟合训练不够#过拟合训练太够了噪声也学进去了#一般来说w的值越大误差越大w的值小误差小但也不能太小不然失去了应用的意义#防止欠拟合和过拟合的方式就岭回归和拉索回归正则化#本质上就是牺牲模型在训练集上的正确率来提高推广、泛化能力,W在数值上越小越好,这样能抵抗数值的扰动。同时为了保证模型的正确率W又不能极小。#**因此将原来的损失函数加上一个惩罚项使得计算出来的模型W相对小一些,就是正则化**。
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- 【学习笔记】 陈强-机器学习-Python-Ch11 决策树(Decision Tree)
赛博机器喵
陈强-机器学习-Python机器学习学习笔记python
系列文章目录监督学习:参数方法【学习笔记】陈强-机器学习-Python-Ch4线性回归【学习笔记】陈强-机器学习-Python-Ch5逻辑回归【课后题练习】陈强-机器学习-Python-Ch5逻辑回归(SAheart.csv)【学习笔记】陈强-机器学习-Python-Ch6多项逻辑回归【学习笔记及课后题练习】陈强-机器学习-Python-Ch7判别分析【学习笔记】陈强-机器学习-Python-Ch
- 吴恩达机器学习笔记:特征与多项式回归
ちゆきー
机器学习笔记回归
1.特征和多项式回归如房价预测问题,ℎθ(x)=θ0+θ1×frontage+θ2×deptℎx1=frontage(临街宽度),x2=deptℎ(纵向深度),x=frontage∗deptℎ=area(面积),则:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方
- 逻辑回归如何实现?
terryjoo
逻辑回归算法pytorch深度学习python
逻辑回归:像医生做诊断一样分类想象你是一位医生,要根据患者的体检数据(如年龄、血压、血糖)判断他们是否患有某种疾病(患病=1,健康=0)。逻辑回归就像你的“诊断公式”:将各项指标加权求和后,通过一个“概率转换器”(Sigmoid函数)输出患病概率。核心步骤数据准备:收集患者的体检数据(特征)和诊断结果(标签)。模型搭建:定义“诊断公式”(线性层+Sigmoid)。训练模型:通过不断调整权重,让预测
- 吴恩达机器学习笔记:多维梯度下降实践
ちゆきー
机器学习笔记计算机视觉
1.特征放缩在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交