临界平面法的基本思想是:裂纹的萌生具有一个危险平面,工程中可以将单元积分点的应力、应变值组装成一个综合参数,衡量不同截面裂纹萌生的难易程度,该方法广泛应用于工程构件在复杂应力状态下的疲劳寿命预测。
调研发现,工程结构所选用的材料种类多种多样,其服役过程中承受的工作载荷也具有明显的差异,使得设备呈现不同的破坏模式,具体有:1. 应力作用下的疲劳裂纹萌生;2. 应变作用下的疲劳裂纹萌生;3. 应力和应变的共同作用使裂纹萌生等。因此,临界平面参数也具有多种表述方法,具体如图1所示:
研究表明,不管在低周疲劳还是高周疲劳,都可以用Smith-Watson-Topper(SWT)参量表征裂纹萌生位置以及寿命预测。SWT参数的求取过程如下所示:
σ 1 1 ′ = σ 11 + σ 22 2 + σ 11 − σ 22 2 cos 2 θ i + τ 12 sin 2 θ i {\sigma _{11'}} = {{{\sigma _{11}} + {\sigma _{22}}} \over 2} + {{{\sigma _{11}} - {\sigma _{22}}} \over 2}\cos 2{\theta _i} + {\tau _{12}}\sin 2{\theta _i} σ11′=2σ11+σ22+2σ11−σ22cos2θi+τ12sin2θi
ε 1 1 ′ = ε 11 + ε 22 2 + ε 11 − ε 22 2 cos 2 θ i + ε 12 sin 2 θ i {\varepsilon _{11'}} = {{{\varepsilon _{11}} + {\varepsilon _{22}}} \over 2} + {{{\varepsilon _{11}} - {\varepsilon _{22}}} \over 2}\cos 2{\theta _i} + {\varepsilon _{12}}\sin 2{\theta _i} ε11′=2ε11+ε22+2ε11−ε22cos2θi+ε12sin2θi
clear all;clc
danyuanchangdu=0.078125;
bianhao=1:104;
distance=danyuanchangdu.*(bianhao-105/2);
renyi=[1869, 1875, 1885, 1888,1893, 1896, 1913, 1916, 1943, 1946, 1947, 1950, 1955, 1958, 1967, 1970,2007,2010, 2011, 2014, 2019, 2022, 2031, 2034, 2103, 2106, 2107, 2110, 2115, 2118,2127, 2130, 2159, 2162, 2229, 2232, 2241, 2244, 2245, 2248, 2297, 2304, 2325,2328, 2329, 2332, 2362, 2363, 2370, 2371, 2382, 2383, 2470, 2471, 2474, 2475,2550, 2551, 2562, 2563, 2570, 2571, 2574, 2575, 2614, 2615, 2626, 2627, 2634,2635, 2638, 2639, 2694, 2695, 2706, 2707, 2714, 2715, 2718, 2719, 2800, 2801,2812, 2813, 2820, 2821, 2824, 2825, 2864, 2865, 2876, 2877, 2884, 2885, 2888,2889, 2944, 2945, 2956, 2957, 2964, 2965, 2968, 2969];(需要提取SWT单元的set集合)
set=renyi';
changdu=length(set);
node=zeros(changdu,1);
ynode=zeros(changdu,2);
for i=1:changdu
node(i,1)=findelement(set(i,1));
ynode(i,1)=findnode(node(i,1));
ynode(i,2)=i;
end
setchange=zeros(changdu,3);
setchange(:,1)=sort(ynode(:,1),'descend');
for i=1:changdu
setchange(i,2)=ynode(find(ynode(:,1)==setchange(i,1)),2);
end
% swt=zeros(changdu,1);
for i=1:changdu
vvv=swtqu(setchange(i,2));
ylmax=max(vvv(1,:));
ybfu=max(vvv(2,:))-min(vvv(2,:));
setchange(i,3)=ylmax*ybfu;
end
jg(1,:)=distance;
jg(2,:)=setchange(:,3);
zuihoujieguo=jg';
plot(zuihoujieguo(:,1),zuihoujieguo(:,2))
function [ element4node ] =findelement( elementnumber )
element=[ ];(part单元集合)
element4node=element(find(element(:,1)==elementnumber),5);
end
function [ ynode ] = findnode( nodenumber )
node=[ ](节点单元集合)
ynode=node(find(node(:,1)==nodenumber),3);
end
function [ yinglichu ] = swtqu( number )
S=[ ];
Le=[ ];
changdu=length(s(:,1));
yingli=zeros(changdu,37);
yingbian=zeros(changdu,37);
for j=1:changdu
z=1;
for i=0:5:180
yingli(j,z)=0.5*(s(j,1)+s(j,2))+0.5*(s(j,1)-s(j,2))*cosd(2*i)+s(j,4)*sind(2*i);
z=z+1;
end
end
yinglichu(1,:)=yingli(number,:);
for j=1:changdu
z=1;
for i=0:5:180
yingbian(j,z)=0.5*(le(j,2)+le(j,3))+0.5*(le(j,2)-le(j,3))*cosd(2*i)+le(j,5)*sind(2*i);
z=z+1;
end
end
yinglichu(2,:)=yingbian(number,:);
end