matplotlib.pyplot.contour([X, Y,] Z, [levels], **kwargs)
Parameters
关键参数如下,剩余参数可在官网中找
X, Y : array-like, optional
Z中值的坐标。
X和Y必须都是二维的,形状与Z相同(例如,通过numpy.meshgrid创建),或者它们必须都是一维的,这样len(X) = M是Z中的列数,len(Y) = N是Z中的行数。
如果没有给出,则假设它们是整数索引,即X = range(M), Y = range(N)。
Z : array-like(N, M)
绘制轮廓的高度值
levels : int or array-like, optional
确定轮廓线/区域的数量和位置
colors : color string or sequence of colors, optional
适用于轮廓线与轮廓区域
linestyles : {None, ‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’}, optional
仅适用于轮廓线
线条样式可以是指定要使用的一组线条样式的字符串的可迭代对象。如果这个可迭代对象小于轮廓层数,它将在必要时重复。
linewidths : float or array-like, default: rcParams[“contour.linewidth”] (default: None)
仅适用于轮廓线
等高线的线宽。
如果是一个数字,所有的轮廓线都将用这个线宽绘制。
如果是序列,则按升序绘制级别,并按指定的顺序绘制线宽。
如果没有,则返回到 rcParams[“lines.linewidth”]
import warnings
import numpy as np
import pandas as pd
import matplotlib as mpl
from matplotlib import colors
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# 加载数据
def loaddata():
data = pd.read_csv('data/svm3.txt', header=0, delimiter='\t')
X = data.iloc[:, :2]
y = data.iloc[:, 2]
return X, y
if __name__ == '__main__':
# 消除警告
warnings.filterwarnings(action='ignore')
# 设置样本显示格式
np.set_printoptions(suppress=True)
x, y = loaddata()
# 分类器
# 超参数为C、gamma
clf_param = (('rbf', 1, 0.1), ('rbf', 1, 1), ('rbf', 1, 10), ('rbf', 1, 100),
('rbf', 5, 0.1), ('rbf', 5, 1), ('rbf', 5, 10), ('rbf', 5, 100),
('rbf', 1, 5), ('rbf', 50, 5), ('rbf', 100, 5), ('rbf', 1000, 5))
x1_min, x2_min = np.min(x, axis=0)
x1_max, x2_max = np.max(x, axis=0)
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
grid_test = np.stack((x1.flat, x2.flat), axis=1)
cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FFA0A0'])
cm_dark = mpl.colors.ListedColormap(['g', 'r'])
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(14, 10), facecolor='w')
for i, param in enumerate(clf_param):
clf = SVC(C=param[1], kernel=param[0])
clf.gamma = param[2]
# if param[0] == 'rbf':
# clf.gamma = param[2]
# title = u'高斯核,C=%.1f,$\gamma$ =%.1f' % (param[1], param[2])
# else:
# title = u'线性核,C=%.1f' % param[1]
clf.fit(x, y)
y_hat = clf.predict(x)
print(u'准确率:', accuracy_score(y, y_hat))
title = u'C=%.1f,gamma =%.1f,准确率1=%.2f' % (param[1], param[2], accuracy_score(y, y_hat))
print(title)
print(u'支撑向量的数目:', clf.n_support_)
print(u'支撑向量的系数:', clf.dual_coef_)
print(u'支撑向量:', clf.support_)
# 画图
plt.subplot(3, 4, i + 1)
grid_hat = clf.predict(grid_test) # 预测分类值
grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同
# 伪彩图
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light, alpha=0.8) # 画决策边界
plt.scatter(x.iloc[:, 0], x.iloc[:, 1], c=y, edgecolors='k', s=40, cmap=cm_dark) # 样本的显示
plt.scatter(x.iloc[clf.support_, 0], x.iloc[clf.support_, 1], edgecolors='k', facecolors='none', s=100,
marker='o') # 支撑向量
# clf.decision_function与参数decision_function_shape取’ovr’、’ovo’有关,是点到超平面的函数间隔。程序首先是计算出’ovo’结果,然后聚合结果。
z = clf.decision_function(grid_test)
z = z.reshape(x1.shape)
# contour绘制等高线图
plt.contour(x1, x2, z, colors=list('kbrbk'), linestyles=['--', '--', '-', '--', '--'],
linewidths=[1, 0.5, 1.5, 0.5, 1], levels=[-1, -0.5, 0, 0.5, 1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(title, fontsize=14)
plt.suptitle(u'SVM不同参数的分类', fontsize=20)
# tight_layout会自动调整子图参数,使之填充整个图像区域
plt.tight_layout(1.4)
# 调整子图间距离
plt.subplots_adjust(top=0.92)
plt.show()
如果对您有帮助,麻烦点赞关注,这真的对我很重要!!!如果需要互关,请评论留言!