- 通过TensorFlow实现简单深度学习模型(2)
yyc_audio
人工智能深度学习python机器学习
前文我们已经实现了对每批数据的训练,下面继续实现一轮完整的训练。完整的训练循环一轮训练就是对训练数据的每个批量都重复上述训练步骤,而完整的训练循环就是重复多轮训练。deffit(model,images,labels,epochs,batch_size=128):forepoch_counterinrange(epochs):print(f"Epoch{epoch_counter}")batch_
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- TensorFlow 架构
weixin_zdpau
AItensorflow人工智能神经网络
https://www.tensorflow.org/guide/extend/architecture一WedesignedTensorFlowforlarge-scaledistributedtrainingandinference,butitisalsoflexibleenoughtosupportexperimentationwithnewmachinelearningmodelsands
- TensorFlow基础架构
humbinal
tensorflow
处理结构计算图纸Tensorflow首先要定义神经网络的结构,然后再把数据放入结构当中去运算和training.处理结构因为TensorFlow是采用数据流图(dataflowgraphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数
- 用 PyTorch/TensorFlow 搭建简单全连接神经网络
gs80140
AIpytorchtensorflow神经网络
目录用PyTorch/TensorFlow搭建简单全连接神经网络网络结构概述1.使用PyTorch构建网络2.使用TensorFlow构建网络总结用PyTorch/TensorFlow搭建简单全连接神经网络在本篇博客中,我们将介绍如何使用两大深度学习框架——PyTorch和TensorFlow,构建一个简单的全连接神经网络。该网络包含输入层、一个隐藏层和输出层,适合初学者理解神经网络的基本构建模块
- 扣子和DIfy调用deepseek对比分析
ISDF-CodeInkVotex
人工智能+科技前沿杂谈人工智能
近日,与网络高人学习,用Coze调用deepseek火山引擎版满血R1大模型,可以构建自己的业务级智能体,觉得还挺好玩的。又闻言,Dify、TensorFlow、PyTorch、Keras、Fastai、HuggingFace等工具可以微调诸如deepseek、chatgpt、doubao等大模型。下面重点讲Dify和Coze在调用deepseek上的区别做一个简要分析,供个人认知扫盲。1.调用方
- serverless framework 模块化部署
ice breaker
Serverlessnodejsserverlessframeworkserverless
serverlessframework模块化部署文章仅代表作者本人的认知,如有谬误,欢迎指正。文章建议配合@serverless/components源码食用本文使用的示例代码Forkedfromsecond-state/tencent-tensorflow-scf这个仓库可以直接部署成一个Serverless的AI推理函数,很有意思书接上回@serverless/components代码简析默认
- 下载cuda11.2+cudnn8.1+tensorflow-gpu2.5
听微雨
深度学习tensorflow人工智能
下载前请先安装显卡驱动,去显卡官网找对应的驱动,英伟达4060就去英伟达官网找4060的驱动。安装cuda11.2和cudnn8.1要注意自己的版本,目前tensorflow-gpu2.5或最高版本tensorflow-gpu2.6只支持cuda11.2和cudnn8.1。同时cuda版本要低于显卡最高支持版本,使用命令行语句查看:nvidia-smi具体安装过程看cuda11.2+cudnn8.
- DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)
一个处女座的程序猿
精选(人工智能)-中级深度学习人工智能tensorflow
DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)导读本人在Win10下安装深度学习框架Tensorflow,安装之前各种谷歌,各种百度,各种国内外资料,做了充分准备。目录安装思路1、tensorflow_gpu+Cuda+Cudnn版本匹配官方推荐2、先解释一下cuda与cudannDL之IDE:深度学
- ai大模型自动化测试-TensorFlow Testing 测试模型实例
小赖同学啊
人工智能自动化测试(apppcAPI)python人工智能tensorflowpython
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍:测试流程测试计划制定确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准确率、召回率等。定义测试范围:界定测试所涵盖的模型功能模块、数据类型、应用场景等,比如是否包括图像识别、自然语言处理等不同功能。规划测试资源:确
- 【数据挖掘在量化交易中的应用:特征发现与特征提取】
调皮的芋头
数据挖掘人工智能神经网络
好的,我将撰写一篇关于金融领域数据挖掘的技术博客,重点阐述特征发现和特征提取,特别是在量化交易中的应用。我会提供具体的实操步骤,并结合Python和TensorFlow进行代码示例。完成后,我会通知您进行查看。数据挖掘在量化交易中的应用:特征发现与特征提取1.概述在金融领域的量化交易中,数据挖掘扮演着极其重要的角色。量化交易依赖于对海量金融数据的分析,从中寻找规律和模式,以支撑交易决策。数据挖掘技
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- 服务器/mac m1配置python环境
LoveSeven.Lin
macospython开发语言
目录服务器配置环境一、安装miniconda二、创建环境三、激活环境四、conda安装Macm1配置环境一、安装Miniforge3二、创建环境三、激活环境四、安装tensorflow五、测试运行服务器配置环境一、安装miniconda#step1:获取安装shell脚本文件wgethttps://repo.continuum.io/miniconda/Miniconda3-latest-Linu
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- 卷积神经网络八股(一)------20行代码搞定鸢尾花分类
有幸添砖java
opencv
编写不易,未有VIP但想白嫖文章的朋友可以关注我的个人公众号“不秃头的码农”直接查看文章,后台回复java资料、单片机、安卓可免费领取资源。你的支持是我最大的动力!卷积神经网络八股(一)------20行代码搞定鸢尾花分类引言用TensorflowAPI:tf.keras实现神经网络搭建八股Sequential的用法compile的用法fit的用法(batch是每次喂入神经网络的样本数、epoch
- 用于获得一个pb文件的所有节点名称
@Mr_LiuYang
写过的小程序
#-*-coding:utf-8-*-"""CreatedonTueDec1818:31:1320181、model_dir为模型路径文件夹,model_name为模型名称(自定义非如alexnet等训练实际名称)2、写入到模型路径下的result.txt文件内@author:Mr_dogyang"""importtensorflowastfimportosmodel_dir='D:\\Tenso
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 基于YOLOv5、FaceNet与KNN的人脸识别系统
reset2021
人脸识别系统YOLOfacenetknn人脸检测
步骤1:环境配置安装依赖库:安装Python3.x安装TensorFlow、Keras、OpenCV等深度学习库获取数据集:收集训练用的多个人脸图像(每个用户至少几十张)将图像按用户分类存放在data/train/user1,user2等文件夹中步骤2:训练YOLO模型配置YOLO数据集:创建一个data.yaml文件,配置您的数据集路径和标签train:./data/train/images/v
- 2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)
emmm形成中
deepseek细分领域应用人工智能金融人工智能python数据挖掘数据分析
2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)目录DeepSeek在保险与金融中的核心价值保险领域:从风险建模到产品创新金融领域:从投资分析到财富管理区块链与联邦学习的应用探索客户关系与私域运营:全球化体验升级工具与资源推荐:从入门到精通未来趋势与挑战一、DeepSeek在保险与金融中的核心价值1.1DeepSeek的核心功能智能风险建模:通过大数据分析,精
- (10054, ‘远程主机强迫关闭了一个现有的连接。‘, None, 10054, None)(联邦学习+ray中常见问题)
还不秃顶的计科生
快捷操作编程技巧服务器前端运维
第一部分:问题描述(pid=24828)Filesalreadydownloadedandverified2025-02-2412:48:44,183ERRORimport_thread.py:89--ImportThread:Errorwhilereadingfromsocket:(10054,'远程主机强迫关闭了一个现有的连接。',None,10054,None)2025-02-2412:48
- 深度学习-2:tensorflow 入门以及简单的线性拟合
wangs0622
深度学习tensorflow深度学习tensorflow线性回归
摘要:介绍tensorflow入门使用tensorflow实现简单的线性回归tensorflow入门知识参考:https://www.tensorflow.org/get_started/get_started载入tensorflow的标准语句:importtensorflowastftensortensor物理上的翻译是张量。tensor是tensorflow的基本核心数据单元,tensor可以
- 从底层驱动到 OpenCV:深入解析 Linux 摄像头完整技术栈
嵌入式Jerry
嵌入式硬件opencvlinux人工智能计算机视觉开发语言服务器
1.引言在嵌入式Linux(如树莓派、NXPi.MX8MPlus)上,摄像头数据的完整处理链涉及多个层次:底层驱动层:设备树(DeviceTree)、MIPICSI-2协议、V4L2(Video4Linux2)中间件层:libcamera(现代化ISP处理)、GStreamer(多媒体流处理)用户空间应用层:OpenCV(计算机视觉)、AI框架(如TensorFlow、YOLO)本篇文章将深入剖析
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa