网上讲的比较清晰的VOT跟踪评价指标EAO

EAO: 又叫非重置重叠期望.

原文:https://blog.csdn.net/sinat_27318881/article/details/84350288

看VOT竞赛报告时,经常会看到一个奇怪的现象,精度A和鲁棒性R的排名都靠前,而EAO,即期望平均覆盖率却不靠前,vice versa,这是怎么回事呢,这篇文章就来说说EAO的计算方法。

1.期望覆盖率
1.1 A和R
看上图,今年的VOT18结果,看看EAO第一的LADCF,A和R都不是第一且都不如第二的MFT但是EAO却排第一,很奇怪吧,之前认为EAO是根据A和R计算出来的,其实不是,只是相关而已。先看看A和R,这两者在VOT13中已经提出,其中A就是精度计算,具体来说就是统计每帧预测的bounding box与gt的交并比,然后平均一下得到单个视频的A,而R则被认为是与A相关性最小的一个度量,从鲁棒性的角度衡量算法性能,具体来说就是计算每个视频跟丢的次数,然后算个失败率,这个值和次数正相关,具体计算方法没有提但是单看排名的话,失败次数和失败率是等价的,失败次数即某帧预测的bb与gt的交集为0则判定失败,然后VOT tool会在5帧之后重新初始化跟踪器。EAO则不是直接用A和R计算的。

 

2.2 EAO与R的关系
之前说过R为鲁棒性,反映为跟丢的次数。讨论极限情况,每一帧的op都为1,A跟踪器和B跟踪器的差别仅在R上,A跟丢1次,B没有跟丢,A即使丢了,初始化后的op仍始终为1,即两者的精度是相同的,鲁棒性不同,来看EAO,假设A在中间帧i跟丢了,所以被分成了2个视频,前一个视频的ϕ \phiϕ显然为0.5,后一个为1,那么EAO为0.75,而B的EAO为1,这就反映了R。以此类推,跟丢的次数越多,被分成的视频就越多,跟丢点越靠前越不利,因为后面大部分的帧的op都算成0了。所以跟丢越多EAO越低。但是EAO和R不等价,很容易看出来,当R相同时,比如都跟丢了一次,但是明显跟丢点在靠前位置的跟踪器的EAO会更低。所以这也反映了VOT这种计算方法的不合理处,这样也导致了文章开头出现的现象。
欢迎与我探讨~

 

 

你可能感兴趣的:(track,VOT,EAO,AI,EAO,VOT)