基于YOLOV5动态检测19种类别

#1 makeTxt.py(将训练数据自动划分为训练集、验证集和测试集)... 2

#2 voc_label.py(将VOC格式数据集转换成yolo数据集)... 3

#3 tube.yaml 6

#4 yolov5s.yaml 7

#5 train.py. 9

#6 detect.py. 28

#7 Video.py(每间隔3秒对应的帧数采集照片并yolov5检测最后保存) 36

#1 makeTxt.py(将训练数据自动划分为训练集、验证集和测试集)

import os
import random


trainval_percent =
0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSet'
total_xml = os.listdir(xmlfilepath)

num =
len(total_xml)
list =
range(num)
tv =
int(num * trainval_percent)
tr =
int(tv * train_percent)
trainval = random.sample(list
, tv)
train = random.sample(trainval
, tr)

ftrainval =
open('data/ImageSet/trainval.txt', 'w')
ftest =
open('data/ImageSet/test.txt', 'w')
ftrain =
open('data/ImageSet/train.txt', 'w')
fval =
open('data/ImageSet/val.txt', 'w')

for i in list:
    name = total_xml[i][:-
4] + '\n'
   
if i in trainval:
        ftrainval.write(name)
       
if i in train:
            ftrain.write(name)
       
else:
            fval.write(name)
   
else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

#2 voc_label.py(将VOC格式数据集转换成yolo数据集)

#xml解析包

import xml.etree.ElementTree as ET

import pickle

import os

# os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表

from os import listdir, getcwd

from os.path import join





sets = ['train', 'test', 'val']

classes = ['01', '02', '03', '04', '05', '06', '07', '08', '09']





# 进行归一化操作

def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)

    dw = 1./size[0]     # 1/w

    dh = 1./size[1]     # 1/h

    x = (box[0] + box[1])/2.0   # 物体在图中的中心点x坐标

    y = (box[2] + box[3])/2.0   # 物体在图中的中心点y坐标

    w = box[1] - box[0]         # 物体实际像素宽度

    h = box[3] - box[2]         # 物体实际像素高度

    x = x*dw    # 物体中心点x的坐标比(相当于 x/原图w)

    w = w*dw    # 物体宽度的宽度比(相当于 w/原图w)

    y = y*dh    # 物体中心点y的坐标比(相当于 y/原图h)

    h = h*dh    # 物体宽度的宽度比(相当于 h/原图h)

    return (x, y, w, h)    # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]





# year ='2012', 对应图片的id(文件名)

def convert_annotation(image_id):

    '''

    将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,

    通过对其解析,然后进行归一化最终读到label文件中去,也就是说

    一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去

    labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个

    '''

    # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件

    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='utf-8')

    # 准备在对应的image_id 中写入对应的label,分别为

    #     

    out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')

    # 解析xml文件

    tree = ET.parse(in_file)

    # 获得对应的键值对

    root = tree.getroot()

    # 获得图片的尺寸大小

    size = root.find('size')

    # 如果xml内的标记为空,增加判断条件

    if size != None:

        # 获得宽

        w = int(size.find('width').text)

        # 获得高

        h = int(size.find('height').text)

        # 遍历目标obj

        for obj in root.iter('object'):

            # 获得difficult ??

            difficult = obj.find('difficult').text

            # 获得类别 =string 类型

            cls = obj.find('name').text

            # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过

            if cls not in classes or int(difficult) == 1:

                continue

            # 通过类别名称找到id

            cls_id = classes.index(cls)

            # 找到bndbox 对象

            xmlbox = obj.find('bndbox')

            # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']

            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),

                 float(xmlbox.find('ymax').text))

            print(image_id, cls, b)

            # 带入进行归一化操作

            # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']

            bb = convert((w, h), b)

            # bb 对应的是归一化后的(x,y,w,h)

            # 生成 calss x y w h 在label文件中

            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')





# 返回当前工作目录

wd = getcwd()

print(wd)





for image_set in sets:

    '''

    对所有的文件数据集进行遍历

    做了两个工作:

    1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位

    2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去

         最后再通过直接读取文件,就能找到对应的label 信息

    '''

    # 先找labels文件夹如果不存在则创建

    if not os.path.exists('data/labels/'):

        os.makedirs('data/labels/')

    # 读取在ImageSets/Main 中的train、test..等文件的内容

    # 包含对应的文件名称

    image_ids = open('data/ImageSet/%s.txt' % (image_set)).read().strip().split()

    # 打开对应的2012_train.txt 文件对其进行写入准备

    list_file = open('data/%s.txt' % (image_set), 'w')

    # 将对应的文件_id以及全路径写进去并换行

    for image_id in image_ids:

        list_file.write('data/images/%s.jpg\n' % (image_id))

        # 调用  year = 年份  image_id = 对应的文件名_id

        convert_annotation(image_id)

    # 关闭文件

    list_file.close()



# os.system(‘comand’) 会执行括号中的命令,如果命令成功执行,这条语句返回0,否则返回1

# os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt")

# os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

#3 tube.yaml



train: ../mydata3/train/images # train images (relative to 'path') 118287 images

val: ../mydata3/val/images # train images (relative to 'path') 5000 images







nc: 19  # number of classes

names: ['module1', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', 'Open', 'Tube body', 'module2', 'Bar 1', 'Bar 2', 'Bar 3', 'module3', '1010', '1011'# class names

#4 yolov5s.yaml

# parameters

nc: 19  # number of classes

depth_multiple: 0.33  # model depth multiple

width_multiple: 0.50  # layer channel multiple



# anchors

anchors:

  - [10,13, 16,30, 33,23]  # P3/8

  - [30,61, 62,45, 59,119]  # P4/16

  - [116,90, 156,198, 373,326]  # P5/32



# YOLOv5 backbone

backbone:

  # [from, number, module, args]

  [[-1, 1, Focus, [64, 3]],  # 0-P1/2

   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4

   [-1, 3, C3, [128]],

   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8

   [-1, 9, C3, [256]],

   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16

   [-1, 9, C3, [512]],

   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32

   [-1, 1, SPP, [1024, [5, 9, 13]]],

   [-1, 3, C3, [1024, False]],  # 9

  ]



# YOLOv5 head

head:

  [[-1, 1, Conv, [512, 1, 1]],

   [-1, 1, nn.Upsample, [None, 2, 'nearest']],

   [[-1, 6], 1, Concat, [1]],  # cat backbone P4

   [-1, 3, C3, [512, False]],  # 13



   [-1, 1, Conv, [256, 1, 1]],

   [-1, 1, nn.Upsample, [None, 2, 'nearest']],

   [[-1, 4], 1, Concat, [1]],  # cat backbone P3

   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)



   [-1, 1, Conv, [256, 3, 2]],

   [[-1, 14], 1, Concat, [1]],  # cat head P4

   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)



   [-1, 1, Conv, [512, 3, 2]],

   [[-1, 10], 1, Concat, [1]],  # cat head P5

   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)



   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)

  ]

#5 train.py

import argparse
import logging
import math
import os

os.environ[
'KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import random
import time
from pathlib import Path
from threading import Thread

import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

import test  # import test.py to get mAP after each epoch
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
    fitness
, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
    check_requirements
, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first

logger = logging.getLogger(__name__)



def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(colorstr(
'hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    save_dir
, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir)
, opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

   
# Directories
   
wdir = save_dir / 'weights'
   
wdir.mkdir(parents=True, exist_ok=True# make dir
   
last = wdir / 'last.pt'
   
best = wdir / 'best.pt'
   
results_file = save_dir / 'results.txt'

   
# Save run settings
   
with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp
, f, sort_keys=False)
   
with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(
vars(opt), f, sort_keys=False)

   
# Configure
   
plots = not opt.evolve  # create plots
   
cuda = device.type != 'cpu'
   
init_seeds(2 + rank)
   
with open(opt.data) as f:
        data_dict = yaml.load(f
, Loader=yaml.SafeLoader)  # data dict
   
with torch_distributed_zero_first(rank):
        check_dataset(data_dict) 
# check
   
train_path = data_dict['train']
    test_path = data_dict[
'val']
    nc =
1 if opt.single_cls else int(data_dict['nc'])  # number of classes
   
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'# class names
   
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
   
pretrained = weights.endswith('.pt')
   
if pretrained:
       
with torch_distributed_zero_first(rank):
            attempt_download(weights) 
# download if not found locally
       
ckpt = torch.load(weights, map_location=device)  # load checkpoint
       
if hyp.get('anchors'):
            ckpt[
'model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
       
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
       
exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else []  # exclude keys
       
state_dict = ckpt['model'].float().state_dict()  # to FP32
       
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
       
model.load_state_dict(state_dict, strict=False# load
       
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
   
else:
        model = Model(opt.cfg
, ch=3, nc=nc).to(device)  # create

    # Freeze
   
freeze = []  # parameter names to freeze (full or partial)
   
for k, v in model.named_parameters():
        v.requires_grad =
True  # train all layers
       
if any(x in k for x in freeze):
           
print('freezing %s' % k)
            v.requires_grad =
False

   
# Optimizer
   
nbs = 64  # nominal batch size
   
accumulate = max(round(nbs / total_batch_size), 1# accumulate loss before optimizing
   
hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
   
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0
, pg1, pg2 = [], [], []  # optimizer parameter groups
   
for k, v in model.named_modules():
       
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias) 
# biases
       
if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight) 
# no decay
       
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight) 
# apply decay

   
if opt.adam:
        optimizer = optim.Adam(pg0
, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
   
else:
        optimizer = optim.SGD(pg0
, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({
'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
   
optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
   
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
   
del pg0, pg1, pg2

   
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
   
lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
   
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    
# plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
   
if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp 
# add hyperparameters
       
wandb_run = wandb.init(config=opt, resume="allow",
                              
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
                              
name=save_dir.stem,
                              
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {
'wandb': wandb}  # loggers dict

    # Resume
   
start_epoch, best_fitness = 0, 0.0
   
if pretrained:
       
# Optimizer
       
if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt[
'optimizer'])
            best_fitness = ckpt[
'best_fitness']

       
# Results
       
if ckpt.get('training_results') is not None:
           
with open(results_file, 'w') as file:
                file.write(ckpt[
'training_results'])  # write results.txt

        # Epochs
        
start_epoch = ckpt['epoch'] + 1
       
if opt.resume:
           
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
       
if epochs < start_epoch:
            logger.info(
'%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights
, ckpt['epoch'], epochs))
            epochs += ckpt[
'epoch'# finetune additional epochs

       
del ckpt, state_dict

   
# Image sizes
   
gs = int(model.stride.max())  # grid size (max stride)
   
nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
   
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
   
if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

   
# SyncBatchNorm
   
if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info(
'Using SyncBatchNorm()')

   
# EMA
   
ema = ModelEMA(model) if rank in [-1, 0] else None

   
# DDP mode
   
if cuda and rank != -1:
        model = DDP(model
, device_ids=[opt.local_rank], output_device=opt.local_rank)

   
# Trainloader
   
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                           
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            
world_size=opt.world_size, workers=opt.workers,
                                           
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels
, 0)[:, 0].max()  # max label class
   
nb = len(dataloader)  # number of batches
   
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

   
# Process 0
   
if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate 
# set EMA updates
       
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt# testloader
                                      
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                      
world_size=opt.world_size, workers=opt.workers,
                                      
pad=0.5, prefix=colorstr('val: '))[0]

       
if not opt.resume:
            labels = np.concatenate(dataset.labels
, 0)
            c = torch.tensor(labels[:
, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
           
if plots:
                plot_labels(labels
, save_dir, loggers)
               
if tb_writer:
                    tb_writer.add_histogram(
'classes', c, 0)

           
# Anchors
           
if not opt.noautoanchor:
                check_anchors(dataset
, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

   
# Model parameters
   
hyp['box'] *= 3. / nl  # scale to layers
   
hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
   
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
   
model.nc = nc  # attach number of classes to model
   
model.hyp = hyp  # attach hyperparameters to model
   
model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
   
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
   
model.names = names

   
# Start training
   
t0 = time.time()
    nw =
max(round(hyp['warmup_epochs'] * nb), 1000# number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
   
maps = np.zeros(nc)  # mAP per class
   
results = (0, 0, 0, 0, 0, 0, 0# P, R, [email protected], [email protected], val_loss(box, obj, cls)
   
scheduler.last_epoch = start_epoch - # do not move
   
scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model) 
# init loss class
   
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using
{dataloader.num_workers} dataloader workers\n'
                f'Logging results to
{save_dir}\n'
                f'Starting training for
{epochs} epochs...')
   
for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
       
model.train()

       
# Update image weights (optional)
       
if opt.image_weights:
           
# Generate indices
           
if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
1 - maps) ** 2 / nc  # class weights
               
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
               
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
           
if rank != -1:
                indices = (torch.tensor(dataset.indices)
if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices
, 0)
               
if rank != 0:
                    dataset.indices = indices.cpu().numpy()

       
# Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

       
mloss = torch.zeros(4, device=device)  # mean losses
       
if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar =
enumerate(dataloader)
        logger.info((
'\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
       
if rank in [-1, 0]:
            pbar = tqdm(pbar
, total=nb)  # progress bar
       
optimizer.zero_grad()
       
for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
           
ni = i + nb * epoch  # number integrated batches (since train start)
           
imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
           
if ni <= nw:
                xi = [
0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
               
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
               
for j, x in enumerate(optimizer.param_groups):
                   
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                   
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                   
if 'momentum' in x:
                        x[
'momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

           
# Multi-scale
           
if opt.multi_scale:
                sz = random.randrange(imgsz *
0.5, imgsz * 1.5 + gs) // gs * gs  # size
               
sf = sz / max(imgs.shape[2:])  # scale factor
               
if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs
for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                   
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

           
# Forward
           
with amp.autocast(enabled=cuda):
                pred = model(imgs) 
# forward
               
loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
               
if rank != -1:
                    loss *= opt.world_size 
# gradient averaged between devices in DDP mode
               
if opt.quad:
                    loss *=
4.

           
# Backward
           
scaler.scale(loss).backward()

           
# Optimize
           
if ni % accumulate == 0:
                scaler.step(optimizer) 
# optimizer.step
               
scaler.update()
                optimizer.zero_grad()
               
if ema:
                    ema.update(model)

           
# Print
           
if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i +
1# update mean losses
               
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0# (GB)
               
s = ('%10s' * 2 + '%10.4g' * 6) % (
                   
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

               
# Plot
               
if plots and ni < 3:
                    f = save_dir /
f'train_batch{ni}.jpg'  # filename
                   
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                   
# if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
               
elif plots and ni == 10 and wandb:
                    wandb.log({
"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')
                                          
if x.exists()]}, commit=False)

           
# end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
       
lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
       
scheduler.step()

       
# DDP process 0 or single-GPU
       
if rank in [-1, 0]:
           
# mAP
           
if ema:
                ema.update_attr(model
, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch +
1 == epochs
           
if not opt.notest or final_epoch:  # Calculate mAP
               
results, maps, times = test.test(opt.data,
                                                 
batch_size=total_batch_size,
                                                
imgsz=imgsz_test,
                                                
model=ema.ema,
                                                
single_cls=opt.single_cls,
                                                
dataloader=testloader,
                                                
save_dir=save_dir,
                                                 
verbose=nc < 50 and final_epoch,
                                                
plots=plots and final_epoch,
                                                
log_imgs=opt.log_imgs if wandb else 0,
                                                 
compute_loss=compute_loss)

           
# Write
           
with open(results_file, 'a') as f:
                f.write(s +
'%10.4g' * 7 % results + '\n'# P, R, [email protected], [email protected], val_loss(box, obj, cls)
           
if len(opt.name) and opt.bucket:
                os.system(
'gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

           
# Log
           
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss'# train loss
                   
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                   
'val/box_loss', 'val/obj_loss', 'val/cls_loss'# val loss
                   
'x/lr0', 'x/lr1', 'x/lr2'# params
           
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
               
if tb_writer:
                    tb_writer.add_scalar(tag
, x, epoch)  # tensorboard
               
if wandb:
                    wandb.log({tag: x}
, step=epoch, commit=tag == tags[-1])  # W&B

            # Update best mAP
           
fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
           
if fi > best_fitness:
                best_fitness = fi

           
# Save model
           
save = (not opt.nosave) or (final_epoch and not opt.evolve)
           
if save:
               
with open(results_file, 'r') as f:  # create checkpoint
                   
ckpt = {'epoch': epoch,
                           
'best_fitness': best_fitness,
                           
'training_results': f.read(),
                           
'model': ema.ema,
                           
'optimizer': None if final_epoch else optimizer.state_dict(),
                           
'wandb_id': wandb_run.id if wandb else None}

               
# Save last, best and delete
               
torch.save(ckpt, last)
               
if best_fitness == fi:
                    torch.save(ckpt
, best)
               
del ckpt
       
# end epoch ----------------------------------------------------------------------------------------------------
    # end training

   
if rank in [-1, 0]:
       
# Strip optimizers
       
final = best if best.exists() else last  # final model
       
for f in [last, best]:
           
if f.exists():
                strip_optimizer(f) 
# strip optimizers
       
if opt.bucket:
            os.system(
f'gsutil cp {final} gs://{opt.bucket}/weights'# upload

        # Plots
       
if plots:
            plot_results(
save_dir=save_dir)  # save as results.png
           
if wandb:
                files = [
'results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb.log({
"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
                                      
if (save_dir / f).exists()]})
               
if opt.log_artifacts:
                    wandb.log_artifact(
artifact_or_path=str(final), type='model', name=save_dir.stem)

       
# Test best.pt
       
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
       
if opt.data.endswith('coco.yaml') and nc == 80# if COCO
           
for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]):  # speed, mAP tests
               
results, _, _ = test.test(opt.data,
                                         
batch_size=total_batch_size,
                                         
imgsz=imgsz_test,
                                         
conf_thres=conf,
                                         
iou_thres=iou,
                                         
model=attempt_load(final, device).half(),
                                         
single_cls=opt.single_cls,
                                         
dataloader=testloader,
                                         
save_dir=save_dir,
                                         
save_json=save_json,
                                         
plots=False)

   
else:
        dist.destroy_process_group()

    wandb.run.finish()
if wandb and wandb.run else None
   
torch.cuda.empty_cache()
   
return results


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
'--weights', type=str, default='yolov5s.pt', help='initial weights path')
    parser.add_argument(
'--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument(
'--data', type=str, default='data/tube.yaml', help='data.yaml path')
    parser.add_argument(
'--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument(
'--epochs', type=int, default=100)
    parser.add_argument(
'--batch-size', type=int, default=8, help='total batch size for all GPUs')
    parser.add_argument(
'--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument(
'--rect', action='store_true', help='rectangular training')
    parser.add_argument(
'--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument(
'--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument(
'--notest', action='store_true', help='only test final epoch')
    parser.add_argument(
'--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument(
'--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument(
'--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument(
'--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument(
'--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument(
'--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument(
'--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument(
'--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument(
'--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument(
'--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument(
'--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument(
'--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
    parser.add_argument(
'--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
    parser.add_argument(
'--workers', type=int, default=0, help='maximum number of dataloader workers')
    parser.add_argument(
'--project', default='runs/train', help='save to project/name')
    parser.add_argument(
'--name', default='exp', help='save to project/name')
    parser.add_argument(
'--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument(
'--quad', action='store_true', help='quad dataloader')
    opt = parser.parse_args()

   
# Set DDP variables
   
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
   
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
   
set_logging(opt.global_rank)
   
if opt.global_rank in [-1, 0]:
        check_git_status()
        check_requirements()

   
# Resume
   
if opt.resume:  # resume an interrupted run
       
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
       
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
       
apriori = opt.global_rank, opt.local_rank
       
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.load(f
, Loader=yaml.SafeLoader))  # replace
       
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
       
logger.info('Resuming training from %s' % ckpt)
   
else:
       
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
       
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
       
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
       
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
       
opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = increment_path(Path(opt.project) / opt.name
, exist_ok=opt.exist_ok | opt.evolve)  # increment run

    # DDP mode
   
opt.total_batch_size = opt.batch_size
    device = select_device(opt.device
, batch_size=opt.batch_size)
   
if opt.local_rank != -1:
       
assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device(
'cuda', opt.local_rank)
        dist.init_process_group(
backend='nccl', init_method='env://'# distributed backend
       
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
       
opt.batch_size = opt.total_batch_size // opt.world_size

   
# Hyperparameters
   
with open(opt.hyp) as f:
        hyp = yaml.load(f
, Loader=yaml.SafeLoader)  # load hyps

    # Train
   
logger.info(opt)
   
# try:
    #     #import wandb
    # except ImportError:
   
wandb = None
   
prefix = colorstr('wandb: ')
    logger.info(
f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
   
if not opt.evolve:
        tb_writer =
None  # init loggers
       
if opt.global_rank in [-1, 0]:
            logger.info(
f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
            tb_writer = SummaryWriter(opt.save_dir) 
# Tensorboard
       
train(hyp, opt, device, tb_writer, wandb)

   
# Evolve hyperparameters (optional)
   
else:
       
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
       
meta = {'lr0': (1, 1e-5, 1e-1)# initial learning rate (SGD=1E-2, Adam=1E-3)
               
'lrf': (1, 0.01, 1.0)# final OneCycleLR learning rate (lr0 * lrf)
               
'momentum': (0.3, 0.6, 0.98)# SGD momentum/Adam beta1
               
'weight_decay': (1, 0.0, 0.001)# optimizer weight decay
               
'warmup_epochs': (1, 0.0, 5.0)# warmup epochs (fractions ok)
               
'warmup_momentum': (1, 0.0, 0.95)# warmup initial momentum
               
'warmup_bias_lr': (1, 0.0, 0.2)# warmup initial bias lr
               
'box': (1, 0.02, 0.2)# box loss gain
               
'cls': (1, 0.2, 4.0)# cls loss gain
               
'cls_pw': (1, 0.5, 2.0)# cls BCELoss positive_weight
               
'obj': (1, 0.2, 4.0)# obj loss gain (scale with pixels)
               
'obj_pw': (1, 0.5, 2.0)# obj BCELoss positive_weight
               
'iou_t': (0, 0.1, 0.7)# IoU training threshold
               
'anchor_t': (1, 2.0, 8.0)# anchor-multiple threshold
               
'anchors': (2, 2.0, 10.0)# anchors per output grid (0 to ignore)
               
'fl_gamma': (0, 0.0, 2.0)# focal loss gamma (efficientDet default gamma=1.5)
               
'hsv_h': (1, 0.0, 0.1)# image HSV-Hue augmentation (fraction)
               
'hsv_s': (1, 0.0, 0.9)# image HSV-Saturation augmentation (fraction)
               
'hsv_v': (1, 0.0, 0.9)# image HSV-Value augmentation (fraction)
               
'degrees': (1, 0.0, 45.0)# image rotation (+/- deg)
               
'translate': (1, 0.0, 0.9)# image translation (+/- fraction)
               
'scale': (1, 0.0, 0.9)# image scale (+/- gain)
               
'shear': (1, 0.0, 10.0)# image shear (+/- deg)
               
'perspective': (0, 0.0, 0.001)# image perspective (+/- fraction), range 0-0.001
               
'flipud': (1, 0.0, 1.0)# image flip up-down (probability)
               
'fliplr': (0, 0.0, 1.0)# image flip left-right (probability)
               
'mosaic': (1, 0.0, 1.0)# image mixup (probability)
               
'mixup': (1, 0.0, 1.0)}  # image mixup (probability)

       
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
       
opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
       
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
       
if opt.bucket:
            os.system(
'gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

       
for _ in range(300):  # generations to evolve
           
if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
               
parent = 'single'  # parent selection method: 'single' or 'weighted'
               
x = np.loadtxt('evolve.txt', ndmin=2)
                n =
min(5, len(x))  # number of previous results to consider
               
x = x[np.argsort(-fitness(x))][:n]  # top n mutations
               
w = fitness(x) - fitness(x).min()  # weights
               
if parent == 'single' or len(x) == 1:
                   
# x = x[random.randint(0, n - 1)]  # random selection
                   
x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
               
elif parent == 'weighted':
                    x = (x * w.reshape(n
, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
               
mp, s = 0.8, 0.2  # mutation probability, sigma
               
npr = np.random
                npr.seed(
int(time.time()))
                g = np.array([x[
0] for x in meta.values()])  # gains 0-1
               
ng = len(meta)
                v = np.ones(ng)
               
while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                   
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
               
for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                   
hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
           
for k, v in meta.items():
                hyp[k] =
max(hyp[k], v[1])  # lower limit
               
hyp[k] = min(hyp[k], v[2])  # upper limit
               
hyp[k] = round(hyp[k], 5# significant digits

            # Train mutation
           
results = train(hyp.copy(), opt, device, wandb=wandb)

           
# Write mutation results
           
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

       
# Plot results
       
plot_evolution(yaml_file)
       
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp
{yaml_file}')

#6 detect.py

"""Run inference with a YOLOv5 model on images, videos, directories, streams



Usage:

    $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640

"""



import argparse

import sys

import time

from pathlib import Path



import cv2

import torch

import torch.backends.cudnn as cudnn



FILE = Path(__file__).absolute()

sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path



from models.experimental import attempt_load

from utils.datasets import LoadStreams, LoadImages

from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \

    apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box

from utils.plots import colors, plot_one_box

from utils.torch_utils import select_device, load_classifier, time_sync





@torch.no_grad()

def run(weights='E:/555/555/yolov5-master/runs/train/exp24/weights/best.pt'# model.pt path(s),E:/555/555/yolov5-master/runs/train/exp24/weights/best.pt  默认: yolov5s.pt

        source='data/images'# file/dir/URL/glob, 0 for webcam

        imgsz=640# inference size (pixels)

        conf_thres=0.25# confidence threshold

        iou_thres=0.45# NMS IOU threshold

        max_det=1000# maximum detections per image

        device=''# cuda device, i.e. 0 or 0,1,2,3 or cpu 默认使用GPU,选择CPU时那么会在CPU设备检测

        view_img=True,  # show results 显示检测的结果

        save_txt=False,  # save results to *.txt

        save_conf=False,  # save confidences in --save-txt labels

        save_crop=False,  # save cropped prediction boxes

        nosave=False,  # do not save images/videos

        classes=None,  # filter by class: --class 0, or --class 0 2 3

        agnostic_nms=False,  # class-agnostic NMS

        augment=False,  # augmented inference

        visualize=False,  # visualize features

        update=False,  # update all models

        project='runs/detect'# save results to project/name

        name='exp'# save results to project/name

        exist_ok=False,  # existing project/name ok, do not increment

        line_thickness=3# bounding box thickness (pixels)

        hide_labels=False,  # hide labels

        hide_conf=False,  # hide confidences

        half=False,  # use FP16 half-precision inference

        ):

    """

        opt参数详解

        weights:测试的模型权重文件

        data:数据集配置文件,数据集路径,类名等

        batch-size:前向传播时的批次, 默认32

        img-size:输入图片分辨率大小, 默认640

        conf-thres:筛选框的时候的置信度阈值, 默认0.001

        iou-thres:进行NMS的时候的IOU阈值, 默认0.65

        save-json:是否按照coco的json格式保存预测框,并且使用cocoapi做评估(需要同样coco的json格式的标签), 默认False

        task:设置测试形式, 默认val, 具体可看下面代码解析注释

        device:测试的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)

        single-cls:数据集是否只有一个类别,默认False

        augment:测试时是否使用TTA(test time augmentation), 默认False

        merge:在进行NMS时,是否通过合并方式获得预测框, 默认False

        verbose:是否打印出每个类别的mAP, 默认False

        save-txt:是否以txt文件的形式保存模型预测的框坐标, 默认False

        """



    save_img = not nosave and not source.endswith('.txt'# save inference images

    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(

        ('rtsp://', 'rtmp://', 'http://', 'https://'))



    # Directories

    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run

    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True# make dir



    # Initialize

    set_logging()

    device = select_device(device)

    half &= device.type != 'cpu'  # half precision only supported on CUDA



    # Load model

    w = weights[0] if isinstance(weights, list) else weights

    classify, pt, onnx = False, w.endswith('.pt'), w.endswith('.onnx'# inference type

    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults

    if pt:

        model = attempt_load(weights, map_location=device)  # load FP32 model

        stride = int(model.stride.max())  # model stride

        names = model.module.names if hasattr(model, 'module') else model.names  # get class names

        if half:

            model.half()  # to FP16

        if classify:  # second-stage classifier

            modelc = load_classifier(name='resnet50', n=2# initialize

            modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()

    elif onnx:

        check_requirements(('onnx', 'onnxruntime'))

        import onnxruntime

        session = onnxruntime.InferenceSession(w, None)

    imgsz = check_img_size(imgsz, s=stride)  # check image size



    # Dataloader

    if webcam:

        view_img = check_imshow()

        cudnn.benchmark = True  # set True to speed up constant image size inference

        dataset = LoadStreams(source, img_size=imgsz, stride=stride)

        bs = len(dataset)  # batch_size

    else:

        dataset = LoadImages(source, img_size=imgsz, stride=stride)

        bs = # batch_size

    vid_path, vid_writer = [None] * bs, [None] * bs



    # Run inference

    if pt and device.type != 'cpu':

        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once

    t0 = time.time()

    for path, img, im0s, vid_cap in dataset:

        if pt:

            img = torch.from_numpy(img).to(device)

            img = img.half() if half else img.float()  # uint8 to fp16/32

        elif onnx:

            img = img.astype('float32')

        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        if len(img.shape) == 3:

            img = img[None# expand for batch dim



        # Inference

        t1 = time_sync()

        if pt:

            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False

            pred = model(img, augment=augment, visualize=visualize)[0]

        elif onnx:

            pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))



        # NMS

        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        t2 = time_sync()



        # Second-stage classifier (optional)

        if classify:

            pred = apply_classifier(pred, modelc, img, im0s)



        # Process predictions

        for i, det in enumerate(pred):  # detections per image

            if webcam:  # batch_size >= 1

                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count

            else:

                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)



            p = Path(p)  # to Path

            save_path = str(save_dir / p.name)  # img.jpg

            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}'# img.txt

            s += '%gx%g ' % img.shape[2:]  # print string

            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh

            imc = im0.copy() if save_crop else im0  # for save_crop

            if len(det):

                # Rescale boxes from img_size to im0 size

                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()



                # Print results

                for c in det[:, -1].unique():

                    n = (det[:, -1] == c).sum()  # detections per class

                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string



                # Write results

                for *xyxy, conf, cls in reversed(det):

                    if save_txt:  # Write to file

                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh

                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format

                        with open(txt_path + '.txt', 'a') as f:

                            f.write(('%g ' * len(line)).rstrip() % line + '\n')



                    if save_img or save_crop or view_img:  # Add bbox to image

                        c = int(cls)  # integer class

                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')

                        plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)

                        if save_crop:

                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)



            # Print time (inference + NMS)

            print(f'{s}Done. ({t2 - t1:.3f}s)')



            # Stream results

            if view_img:

                cv2.imshow(str(p), im0)

                cv2.waitKey(1# 1 millisecond



            # Save results (image with detections)

            if save_img:

                if dataset.mode == 'image':

                    cv2.imwrite(save_path, im0)

                else# 'video' or 'stream'

                    if vid_path[i] != save_path:  # new video

                        vid_path[i] = save_path

                        if isinstance(vid_writer[i], cv2.VideoWriter):

                            vid_writer[i].release()  # release previous video writer

                        if vid_cap:  # video

                            fps = vid_cap.get(cv2.CAP_PROP_FPS)

                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))

                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

                        else# stream

                            fps, w, h = 30, im0.shape[1], im0.shape[0]

                            save_path += '.mp4'

                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))

                    vid_writer[i].write(im0)



    if save_txt or save_img:

        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''

        print(f"Results saved to {colorstr('bold', save_dir)}{s}")



    if update:

        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)



    print(f'Done. ({time.time() - t0:.3f}s)')





def parse_opt():#这里参数可以修改

    parser = argparse.ArgumentParser()

    parser.add_argument('--weights', nargs='+', type=str, default='E:/555/555/yolov5-master/runs/train/exp24/weights/best.pt', help='model.pt path(s)') #打开训练完的自己数据集(best.pt)路径: E:/555/555/yolov5-master/runs/train/exp14/weights/best.pt

    parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')#data/images,打开普通照片路径:E:/555/555/mydata3/test,打开摄像头:0

    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')

    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')

    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')

    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')

    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

    parser.add_argument('--view-img', action='store_true', help='show results')

    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')

    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')

    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')

    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')

    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')

    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')

    parser.add_argument('--augment', action='store_true', help='augmented inference')

    parser.add_argument('--visualize', action='store_true', help='visualize features')

    parser.add_argument('--update', action='store_true', help='update all models')

    parser.add_argument('--project', default='runs/detect', help='save results to project/name')

    parser.add_argument('--name', default='exp', help='save results to project/name')

    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')

    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')

    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')

    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')

    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')

    opt = parser.parse_args()

    return opt





def main(opt):

    print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))

    check_requirements(exclude=('tensorboard', 'thop'))

    run(**vars(opt))





if __name__ == "__main__":

    opt = parse_opt()

    main(opt)

#7 Video.py(每间隔3秒对应的帧数采集照片并yolov5检测最后保存)

import time

import cv2

import numpy as np

from PIL import Image



import detect

# from detect import parse_opt #这里的detect是detect.py(yolov5的检测)文件,parse_opt表示检测参数的设置

# detect = parse_opt



capture = cv2.VideoCapture(0)

# capture=cv2.VideoCapture("D:/1.mp4")



if capture.isOpened():

    ref, frame = capture.read()

else:

    ref = False



fps = 0.0



timeF = 420   #yolov5每秒140帧(FPS)



c = 1

while ref:

    t1 = time.time()

    # 读取某一帧

    ref, frame = capture.read()



    # 此处保存图片无检测结果,用于采集训练数据和测试摄像头是否清晰稳定

    if (c % timeF == 0):



        fps = (fps + (1. / (time.time() - t1))) / 2

        print("fps= %.2f" % (fps))

        frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)



        # 采集到每隔420帧的图像,保存到/runs/img./in/



        cv2.imwrite("./runs/img/in/" + str(c) + '.jpg', frame)



        # 将采集到的/runs/img./in/图像输入detect检测,结果保存在/runs/img/out



        detect.run(source="./runs/img/in/" + str(c) + '.jpg', name='../img/out/photo')



    c += 1









    # print(frame)

    #

    # # 格式转变,BGRtoRGB

    # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # # 转变成Image

    # frame = Image.fromarray(np.uint8(frame))

    # # 进行检测

    # frame = np.array(detect.run(source=frame))





    # # RGBtoBGR满足opencv显示格式

    # frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

    #

    # # 此处保存的图片有检测结果,用于保留检测结果

    # if (c % timeF == 0):

    #     cv2.imwrite("./runs/" + str(c) + '.jpg', frame)

    # c += 1

    #

    # fps = (fps + (1. / (time.time() - t1))) / 2

    # print("fps= %.2f" % (fps))

    # frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)



    # 此处保存的图片上既有检测结果,也有fps值,用于监测不同fps下的检测结果

    # if (c % timeF == 0):

    #    cv2.imwrite("D:/photo/" + str(c) + '.jpg', frame)

    # c += 1



    # 显示摄像头

    cv2.imshow("video", frame)

    k = cv2.waitKey(1)



    # 按q退出

    if k == ord('q'):

        capture.release()

        break



    # 按ESC退出

    k = cv2.waitKey(1)

    if k == 27:

        capture.release()

        break

你可能感兴趣的:(pytorch,深度学习,python,pyqt5)