用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散。
对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的压制)之后“深度”的话,就会需要对池化后的结果继续用不同的卷积核进行“卷积+relu”再池化的工作。
最后得到的实质是一个图片的深度特征,然后实际分类需要另外加一层,一般是softmax。
(也就是说如果对一个现成的已经训练完毕的卷积神经网络模型,只保留除了最后一层之外的部分,然后输入训练图片,把网络的输出重新送入一个多类的SVM再训练,最后也能得到差不多的结果,取决于svm的参数。)
谷歌人工智能写作项目:神经网络伪原创
一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列写作猫。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。
用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客。
#coding:utf-8''' GPU run command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python CPU run command: python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。
'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024) # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。
1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。
4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。
4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。
verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=True, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) height_shift_range=0.2, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch): print('-'*40) print('Epoch', e) print('-'*40) print("Training...") # batch train with realtime data augmentation progbar = generic_utils.Progbar(data.shape[0]) for X_batch, Y_batch in (data, label): loss,accuracy = model.train(X_batch, Y_batch,accuracy=True) (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。
卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。
目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。
事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。
与双目立体匹配不同的是,MVS的输入是任意数目的视图,这是深度学习方法需要解决的一个棘手的问题。
而且只有很少的工作意识到该问题,比如SurfaceNet事先重建彩色体素立方体,将所有像素的颜色信息和相机参数构成一个3D代价体,所构成的3D代价体即为网络的输入。
然而受限于3D代价体巨大的内存消耗,SurfaceNet网络的规模很难增大:SurfaceNet运用了一个启发式的“分而治之”的策略,对于大规模重建场景则需要花费很长的时间。
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。
实验输入仍然采用MNIST图像使用10个featuremap时,卷积和pooling的结果分别如下所示。
部分源码如下:[python] viewplain copy#coding=utf-8'''''Created on 2014年11月30日@author: Wangliaofan'''import numpyimport structimport matplotlib.pyplot as pltimport mathimport randomimport copy#testfrom BasicMultilayerNeuralNetwork import BMNN2def sigmoid(inX):if (-inX)== 0.0:return 999999999.999999999return 1.0/((-inX))def difsigmoid(inX):return sigmoid(inX)*(1.0-sigmoid(inX))def tangenth(inX):return (1.0*(inX)-1.0*(-inX))/(1.0*(inX)+1.0*(-inX))def cnn_conv(in_image, filter_map,B,type_func='sigmoid'):#in_image[num,feature map,row,col]=>in_image[Irow,Icol]#features map[k filter,row,col]#type_func['sigmoid','tangenth']#out_feature[k filter,Irow-row+1,Icol-col+1]shape_image=numpy.shape(in_image)#[row,col]#print "shape_image",shape_imageshape_filter=numpy.shape(filter_map)#[k filter,row,col]if shape_filter[1]>shape_image[0] or shape_filter[2]>shape_image[1]:raise Exceptionshape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)out_feature=numpy.zeros(shape_out)k,m,n=numpy.shape(out_feature)for k_idx in range(0,k):#rotate 180 to calculate convc_filter=numpy.rot90(filter_map[k_idx,:,:], 2)for r_idx in range(0,m):for c_idx in range(0,n):#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)(conv_temp)if type_func=='sigmoid':out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])elif type_func=='tangenth':out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])else:raise Exceptionreturn out_featuredef cnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):k,row,col=numpy.shape(out_feature)max_index_Matirx=numpy.zeros((k,row,col))out_row=int(numpy.floor(row/pooling_size))out_col=int(numpy.floor(col/pooling_size))out_pooling=numpy.zeros((k,out_row,out_col))for k_idx in range(0,k):for r_idx in range(0,out_row):for c_idx in range(0,out_col):temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]out_pooling[k_idx,r_idx,c_idx](temp_matrix)max_index=numpy.argmax(temp_matrix)#print max_index#print max_index/pooling_size,max_index%pooling_sizemax_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1return out_pooling,max_index_Matirxdef poolwithfunc(in_pooling,W,B,type_func='sigmoid'):k,row,col=numpy.shape(in_pooling)out_pooling=numpy.zeros((k,row,col))for k_idx in range(0,k):for r_idx in range(0,row):for c_idx in range(0,col):out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])return out_pooling#out_feature is the out put of convdef backErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):k1,row,col=numpy.shape(out_feature)error_conv=numpy.zeros((k1,row,col))k2,theta_row,theta_col=numpy.shape(theta)if k1!=k2:raise Exceptionfor idx_k in range(0,k1):for idx_row in range( 0, row):for idx_col in range( 0, col):error_conv[idx_k,idx_row,idx_col]=\max_index_Matirx[idx_k,idx_row,idx_col]*\float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*\difsigmoid(out_feature[idx_k,idx_row,idx_col])return error_convdef backErrorfromConvToInput(theta,inputImage):k1,row,col=numpy.shape(theta)#print "theta",k1,row,coli_row,i_col=numpy.shape(inputImage)if row>i_row or col> i_col:raise Exceptionfilter_row=i_row-row+1filter_col=i_col-col+1detaW=numpy.zeros((k1,filter_row,filter_col))#the same with conv valid in matlabfor k_idx in range(0,k1):for idx_row in range(0,filter_row):for idx_col in range(0,filter_col):subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]#print "subInputMatrix",numpy.shape(subInputMatrix)#rotate theta 180#print numpy.shape(theta)theta_rotate=numpy.rot90(theta[k_idx,:,:], 2)#print "theta_rotate",theta_rotate(subInputMatrix,theta_rotate)detaW[k_idx,idx_row,idx_col](dotMatrix)detaB=numpy.zeros((k1,1))for k_idx in range(0,k1):detaB[k_idx](theta[k_idx,:,:])return detaW,detaBdef loadMNISTimage(absFilePathandName,datanum=60000):images=open(absFilePathandName,'rb')()index=0magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)print magic, numImages , numRows , numColumnsindex += struct.calcsize('>IIII')if magic != 2051:raise Exceptiondatasize=int(784*datanum)datablock=">"+str(datasize)+"B"#nextmatrix=struct.unpack_from('>47040000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)/255.0#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)return nextmatrix, numImagesdef loadMNISTlabels(absFilePathandName,datanum=60000):labels=open(absFilePathandName,'rb')()index=0magic, numLabels = struct.unpack_from('>II' , buf , index)print magic, numLabelsindex += struct.calcsize('>II')if magic != 2049:raise Exceptiondatablock=">"+str(datanum)+"B"#nextmatrix=struct.unpack_from('>60000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)return nextmatrix, numLabelsdef simpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):decayRate=0.01MNISTimage,num1=loadMNISTimage("F:\Machine Learning\UFLDL\data\common\\train-images-idx3-ubyte",imageNum)print num1row,col=numpy.shape(MNISTimage[0,0,:,:])out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)MLP.setTrainDataNum(imageNum)MLP.loadtrainlabel("F:\Machine Learning\UFLDL\data\common\\train-labels-idx1-ubyte")MLP.initialweights()#MLP.printWeightMatrix()rng = numpy.random.RandomState(23455)W_shp = (numofFilter, filter_size, filter_size)W_bound = (numofFilter * filter_size * filter_size)W_k=rng.uniform(low=-1.0 / W_bound,high=1.0 / W_bound,size=W_shp)B_shp = (numofFilter,)B= numpy.asarray(rng.uniform(low=-.5, high=.5, size=B_shp))cIter=0while cIter。
卷积神经网络用全连接层的参数确定:卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。
它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
输入层卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组。
由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。