【python】根据自定义曲线函数进行拟合

【参考】

  • 官网 curve_fit
  • 示例与评估:拟合curve_fit
  • 使用矫正的R^2评估非线性模型:拟合评估
  • 其他:
    • curve_fit()实现任意形式的曲线拟合-csdn
    • 拟合优度r^2-csdn

官网示例

拟合函数:
f ( x ) = a e − b x + c f(x)=ae^{-bx}+c f(x)=aebx+c

import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import numpy as np

def func(x, a, b, c):
    return a * np.exp(-b * x) + c

xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
rng = np.random.default_rng()
y_noise = 0.2 * rng.normal(size=xdata.size)
ydata = y + y_noise

print("--- raw data----")
print(len(xdata), len(ydata))
plt.plot(xdata, ydata, 'b-', label='data')

print("--- curve1----")
popt, pcov = curve_fit(func, xdata, ydata)
print("最优化参数:", popt)
print("协方差:\n", pcov)
plt.plot(xdata, func(xdata, *popt), 'r-',
         label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

print("--- curve2----")
popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
print(popt, '\n', pcov)
plt.plot(xdata, func(xdata, *popt), 'g--',
         label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

【python】根据自定义曲线函数进行拟合_第1张图片

计算拟合结果的指标

  • 总平方和: S S T = ∑ ( y i − y ˉ ) 2 SST=\sum{(y_i-\bar{y})^2} SST=(yiyˉ)2

    总平方和(SST) = 回归平方和(SSR)十残差平方和(SSE)

  • 回归平方和: S S R = ∑ ( y ^ i − y ˉ ) 2 SSR=\sum{(\hat{y}_i-\bar{y})^2} SSR=(y^iyˉ)2

  • 残差平方和: S S E = ∑ ( y i − y ^ i ) 2 SSE=\sum{(y_i-\hat{y}_i)^2} SSE=(yiy^i)2

  • 判定系数R-square
    R 2 = S S R S S T = S S T − S S E S S T = 1 − S S E S S T R^2=\frac{SSR}{SST}=\frac{SST-SSE}{SST}=1-\frac{SSE}{SST} R2=SSTSSR=SSTSSTSSE=1SSTSSE

  • 矫正判定系数Adjusted R-square: Degree-of-freedom adjusted coefficient of determination

    R a d j u s t e d 2 = 1 − ( 1 − R 2 ) ( n − 1 ) n − p − 1 R^2_{adjusted} = 1 - \frac{(1-R^2)(n-1)}{n-p-1} Radjusted2=1np1(1R2)(n1)

    其中,n为样本个数,p为特征个数

    R-square不适合用于判断非线性拟合的效果

  • M S E MSE MSE (均方差、方差): M S E = S S E / n = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE=SSE/n=\frac{1}{n}\sum_{i=1}^{n}{(y_i-\hat{y}_i)^2} MSE=SSE/n=n1i=1n(yiy^i)2

  • R M S E RMSE RMSE(均方根、标准差):
    R M S E = M S E = S S E / n = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 RMSE=\sqrt{MSE}=\sqrt{SSE/n}=\sqrt{\frac{1}{n}\sum_{i=1}^{n}{(y_i-\hat{y}_i)^2}} RMSE=MSE =SSE/n =n1i=1n(yiy^i)2


未完待续。。。

你可能感兴趣的:(python,机器学习,python,非线性拟合)