比如模型如下:
class Net(nn.Module):
# 初始化定义网络的结构:也就是定义网络的层
def __init__(self):
super(Net,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,6,kernel_size=5,stride=1,padding=0),
# 激活函数
nn.ReLU(),
# kernel_size:pooling size,stride:down-sample
nn.MaxPool2d(kernel_size=2,stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(6,16,kernel_size=5,stride=1,padding=0),
# 激活函数
nn.ReLU(),
# kernel_size:pooling size,stride:down-sample
nn.MaxPool2d(kernel_size=2,stride=2))
self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.ReLU()
)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
# x = x.reshape(x.size(0),-1)
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model= Net().to(device)
在外部修改:
w1 = torch.empty(model.layer1[0].weight.shape) #according to the layer shape to create tensor
nn.init.kaiming_uniform_(w1, mode='fan_in', nonlinearity='relu')
model.layer1[0].weight.data.copy_(w1)
通过这种方式,模型的第一个卷积层的参数就被修改了。
这里用到的是He Kaiming的uniform的初始化方式,还有normal,以及很多其他人的方式也可以用,比如Xavier initialization, 详情可见这个页面, pytorch提供了一系列初始化参数的方法,可以对还没开始训练的模型进行参数修改。
当然也可以放在模型内部就修改。
class Net(nn.Module):
# 初始化定义网络的结构:也就是定义网络的层
def __init__(self):
super(Net,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,6,kernel_size=5,stride=1,padding=0),
# 激活函数
nn.ReLU(),
# kernel_size:pooling size,stride:down-sample
nn.MaxPool2d(kernel_size=2,stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(6,16,kernel_size=5,stride=1,padding=0),
# 激活函数
nn.ReLU(),
# kernel_size:pooling size,stride:down-sample
nn.MaxPool2d(kernel_size=2,stride=2))
w1 = torch.empty(self.layer1[0].weight.shape) #according to the layer shape to create tensor
nn.init.kaiming_normal_(w1, mode='fan_in', nonlinearity='relu')
self.layer1[0].weight.data.copy_(w1)
self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.ReLU()
)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
# x = x.reshape(x.size(0),-1)
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model= Net().to(device)