Pytorch机器学习(三)——VOC数据集转换为YOLO数据集

Pytorch机器学习(三)——VOC数据集转换为YOLO数据集

目录

Pytorch机器学习(三)——VOC数据集转换为YOLO数据集

前言

一、yolo格式

二、代码

总结



前言

本文为利用pytorch官方提供的datasets读取VOC数据集的方法,来处理数据集并把其转化为yolo的格式。如果对datasets读取VOC数据集的方法不熟悉,可以看上篇文章

Pytorch机器学习(二)——利用torchvision.datasets分析,处理,可视化VOC数据集

其次,本文的代码是参考了b站博主的代码,做了一定的改进和修改。

霹雳吧啦Wz b站主页

一、yolo格式

我们先来看看用于yolo网络训练的格式长什么样

Pytorch机器学习(三)——VOC数据集转换为YOLO数据集_第1张图片

 其中images中为原始图片,labels中对应标签的信息,其中标签的信息,相对于VOC原始的信息有一点不样,yolo格式里的boundingbox的信息为中心坐标x,y和长宽,而VOC格式里的boundingbox的信息为左上角和右上角的坐标。

 Pytorch机器学习(三)——VOC数据集转换为YOLO数据集_第2张图片Pytorch机器学习(三)——VOC数据集转换为YOLO数据集_第3张图片

二、代码

代码部分,我写的注释比较多,如果还有不理解的地方,可以来私信我。这里说一下,怎么使用这个代码。

1.我们首先需要一个json格式的目录,放在和VOCdevkit中,其内容为标签的编号,我这里只有一个face,注意,要从1开始,0是背景。

 

2.只需要按需要修改前面几个地址,和voc的版本和年份以及voc_val_txt_path 中的val.txt即可,因为我发现有的数据集是test.txt有的是val.txt,可以自己去看看。

import torchvision.datasets as datasets
from tqdm import tqdm
import shutil
import json
import os

# json和voc数据集目录
label_json_path = './data/pascal_voc_classes.json'  # VOC中json目录的
voc_root = './data/VOCdevkit'   # VOC数据集地址,按需修改,默认在根目录
voc_version = 'VOC2012'         # VOC版本,需要修改!!
voc_year = "2012"               # VOC年份,需要修改!!
# 拼接出voc的data目录
voc_images_path = os.path.join(voc_root, voc_version, "JPEGImages")
voc_xml_path = os.path.join(voc_root, voc_version, "Annotations")
voc_train_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", "train.txt")
voc_val_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", "val.txt")     # 注意!这里有的数据集是val.txt,有的是test.txt,按需修改!!
# 拼接出保存的目录结构
save_path_root = './yolo_datasets'
save_path_train = os.path.join(save_path_root, 'train')
save_path_train_images = os.path.join(save_path_train, 'images')
save_path_train_labels = os.path.join(save_path_train, 'labels')
save_path_val = os.path.join(save_path_root, 'val')
save_path_val_images = os.path.join(save_path_val, 'images')
save_path_val_labels = os.path.join(save_path_val, 'labels')
save_path = [save_path_root, save_path_train, save_path_train_images, save_path_train_labels, save_path_val, save_path_val_images, save_path_val_labels]


# 检测并创建需要的文件夹
def check_path(save_path):
    if not os.path.exists(save_path):
        os.mkdir(save_path)
        print("making {} file".format(save_path))


# 生成json 对应.name文件
def create_class_names(class_dict: dict):
    keys = class_dict.keys()
    with open("./data/my_data_label.names", "w") as w:
        for index, k in enumerate(keys):
            if index + 1 == len(keys):
                w.write(k)
            else:
                w.write(k + "\n")


def voc_translate_yolo(file_name, xml_object, class_dict, type):
    """
      将对应xml文件信息转为yolo中使用的txt文件信息
      :param file_names:读取相应训练集或者测试集中的图片
      :param class_dict:类别名单
      :param type:确定是训练集还是测试集
      :return:
      """

    for file in tqdm(file_name, desc="translate {} file...".format(type)):

        img_path = os.path.join(voc_images_path, file + '.jpg')                   # 得到对应图像的路径
        assert os.path.exists(img_path), "file:{} not exist...".format(img_path) # 检测是否图像存在
        # file + '.xml' = xml的名称 例如 “012906.jpg”
        xml_path = os.path.join(voc_xml_path, file + '.xml')
        assert os.path.exists(xml_path), "file:{} not exist...".format(img_path) # 检测对应xml文件是否存在
        # file + '.jpg' = 图片名字 例如 “012906.jpg”
        xml_data = xml_object[file + '.jpg']
        assert "object" in xml_data.keys(), "file: '{}' lack of object key.".format(xml_path)  # 如果没有object对象,则不处理
        if len(xml_data['object']) == 0:
            print("Warning: in '{}' xml, there are no objects.".format(xml_path))
            continue

        # 获取图片高宽,给后面算绝对坐标
        image_height = int(xml_data["size"]["height"])
        image_width = int(xml_data["size"]["height"])

        # 确定保存labels中txt文件路径
        if type == 'train':
            save_txt_path = os.path.join(save_path_train_labels, file + '.txt')
        else:
            save_txt_path = os.path.join(save_path_val_labels, file + '.txt')

        with open(save_txt_path, "w") as f:
            for index, obj in enumerate(xml_data["object"]):
                # 获取四个坐标信息,待后续转换为yolo格式
                xmin = float(obj["bndbox"]["xmin"])
                xmax = float(obj["bndbox"]["xmax"])
                ymin = float(obj["bndbox"]["ymin"])
                ymax = float(obj["bndbox"]["ymax"])
                class_name = obj["name"]

                if class_name not in class_dict:
                    print("Warning: in '{}' xml, some class_name are error".format(xml_path))
                    continue
                class_index = class_dict[class_name] - 1  # 目标id从0开始

                # 进一步检查数据,有的标注信息中可能有w或h为0的情况,这样的数据会导致计算回归loss为NAN
                if xmax <= xmin or ymax <= ymin:
                    print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                    continue

                # 将box信息转换到yolo格式
                xcenter = xmin + (xmax - xmin) / 2
                ycenter = ymin + (ymax - ymin) / 2
                w = xmax - xmin
                h = ymax - ymin

                # 绝对坐标转相对坐标,保存6位小数
                xcenter = round(xcenter / image_width, 6)
                ycenter = round(ycenter / image_height, 6)
                w = round(w / image_width, 6)
                h = round(h / image_height, 6)

                info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]

                if index == 0:
                    f.write(" ".join(info))
                else:
                    f.write("\n" + " ".join(info))

        # copy image into save_images_path
        if type == "train":
            path_copy_to = os.path.join(save_path_train_images, file+'.jpg')
        else:
            path_copy_to = os.path.join(save_path_val_images, file+'.jpg')

        shutil.copyfile(img_path, path_copy_to)


def main():
    # 通过pytorch官方datasets读取xml文件
    data_path = './data'
    voc_train = datasets.VOCDetection(data_path, year=voc_year, image_set='train')
    voc_val = datasets.VOCDetection(data_path, year=voc_year, image_set='val')
    # 创建文件夹目录
    for path in save_path:
        check_path(path)

    # 提取出xml文件, 存放在xml_object中
    xml_object = {}
    for image, target in tqdm(voc_train, desc="extracting {} xml files...".format('train')):
        data = {target['annotation']['filename']: target['annotation']}
        xml_object.update(data)

    for image, target in tqdm(voc_val, desc="extracting {} xml files...".format('val')):
        data = {target['annotation']['filename']: target['annotation']}
        xml_object.update(data)

    # 读取出json文件
    json_file = open(label_json_path, 'r')
    class_dict = json.load(json_file)

    # 将voc中train.txt和val.txt文件中的内容提取出来
    with open(voc_train_txt_path, "r") as r:
        train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]

    with open(voc_val_txt_path, "r") as r:
        val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]

    # 训练集划分
    voc_translate_yolo(train_file_names, xml_object, class_dict, type="train")
    print("train file has been done!......")
    # 测试集划分
    voc_translate_yolo(val_file_names, xml_object, class_dict, type="val")
    print("val file has been done!......")
    
    # 生成.name 文件
    create_class_names(class_dict)
    
if __name__ == "__main__":
    main()

总结

本文,更像是资料分享把,因为平常要将voc转为yolo的情况还挺多的

你可能感兴趣的:(深度学习,python,目标检测,机器学习,深度学习,人工智能)