- Redis:深入理解阻塞列表弹出与消息发布订阅机制_brpop原理
高级工程师2024
2024年程序员学习redisbootstrap数据库
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶
- HarmonyOS Next模型结构优化策略
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型结构优化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型结构优化原理与目标(一)基本原理在HarmonyOSNext的模型世界里,模型结构优化就像是精心设计一座桥梁,要在保证稳固(性
- HarmonyOS Next企业级分布式办公应用实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建企业级分布式办公应用的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、办公应用需求与系统架构搭建(一)企业级分布式办公应用需求分析多人协作编辑文档需求在企业办公中,多人协作编辑文档是常见的
- HarmonyOS Next智能车载应用开发实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)的智能车载应用开发技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、车载应用场景与架构规划(一)常见车载应用场景导航功能导航是智能车载应用中最常用的功能之一。它为驾驶员提供准确的路线规划、实时交
- HarmonyOS Next 应用性能优化实战
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中应用性能优化的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、性能评估指标与工具(一)关键性能评估指标CPU使用率CPU使用率是衡量应用在运行过程中对CPU资源占用情况的重要指标。一个高效的Ha
- HarmonyOS Next 应用开发中的分布式能力提升
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中分布式能力相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、HarmonyOSNext分布式能力概述(一)核心概念HarmonyOSNext的分布式能力宛如一座无形的桥梁,巧妙地连接起众多设备
- HarmonyOS Next 界面开发新特性与技巧
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中界面开发相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、ArkUI框架在HarmonyOSNext中的演进(一)发展历程ArkUI框架从最初的版本一路走来,在HarmonyOSNext中实现
- HarmonyOS Next 端侧部署基础之 HiAI Foundation Kit
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中端侧部署涉及的HiAIFoundationKit技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、HiAIFoundationKit简介与功能概述在HarmonyOSNext的端侧部署中,HiAI
- HarmonyOS Next智能家居控制系统的模型轻量化实践
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)在智能家居控制系统中模型轻量化技术的实践应用,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能家居控制需求与模型轻量化架构搭建(一)常见需求分析设备状态识别需求智能家居控制系统需要准确识别各种智能设
- HarmonyOS Next智能驾驶辅助系统的模型轻量化应用
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)在智能驾驶辅助系统中模型轻量化技术的应用,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能驾驶场景与模型轻量化策略规划(一)关键场景分析车道线检测场景车道线检测是智能驾驶辅助系统的基础功能之一,对于
- HarmonyOS Next智能安防系统中的模型轻量化实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建智能安防系统中的模型轻量化技术实践,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能安防系统需求与模型轻量化方案设计(一)功能需求分析目标检测需求在智能安防系统中,目标检测是核心功能之一。它需要
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 【2023】
梦想橡皮擦
excel华为python算法华为od
最近更新的博客华为OD机试题-最短耗时(JavaScript)华为OD机试题-机器人走迷宫(JavaScript)华为OD机试-新员工座位安排系统(Python)|机试题算法思路华为OD机试-能力组队(Python)|机试题算法思路华为OD机试-内存池(Python)|机试题算法思路使用说明参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。华为OD清单查看地址:bl
- 神经网络常见激活函数 10-GELU函数
亲持红叶
神经网络常见激活函数神经网络neo4j人工智能
GELU高斯误差线性单元(Gaussianerrorlinearunit)函数+导函数GELU函数的公式(近似表达式)GELU(x)=x∗P(X<=x)=x∗Φ(x)\rmGELU(x)=x*P(X<=x)=x*\Phi(x)GELU(x)=x∗P(X<=x)=x∗Φ(x)其中Φ(x)\Phi(x)Φ(x)指的是x的高斯正太分布的累积分布函数(CDF),进一步地,可得该函数的具体表达为x∗P(X<
- ocr智能票据识别系统|自动化票据识别集成方案
OCR_API
接口ocr自动化运维
在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了工作效率。一、什么是OCR智能票据识别系统?OCR智能票据识别系统是一种基于先进图像处理和深度学习算法的技术,能够自动从各类票据中提取关键信息,并将其转换为结构化数据。翔云发票识别系统可以应用于增值税
- 在linux 中搭建deepseek 做微调,硬件配置要求说明
慧香一格
学习AIlinux服务器deepseek
搭建可参考使用deepseek-CSDN博客官方网站:DeepSeekDeepSeek是一个基于深度学习的开源项目,旨在通过深度学习技术来提升搜索引擎的准确性和效率。如果你想在Linux系统上搭建DeepSeek,你可以遵循以下步骤。这里我将提供一个基本的指导,帮助你从零开始搭建一个基础的DeepSeek环境。1.安装依赖首先,确保你的Linux系统上安装了Python和pip。DeepSeek主
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- 深入剖析模型推理:原理、技术与挑战
♢.*
人工智能模型推理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在当今人工智能飞速发展的时代,模型
- AI 编程工具崛起,程序员的未来是否岌岌可危?
一、AI编程工具的现状AI编程工具的出现与迅猛发展是技术进步的必然结果。这一趋势首先得益于开源社区和代码托管平台提供的丰富代码样本,它们为AI模型的学习提供了充足的素材。其次,编程语言本身的严格语法和结构化特点,使得AI能够高效、精确地理解和生成代码。再者,深度学习技术的突破,尤其是大语言模型在代码理解与生成方面的显著进展,为AI编程提供了坚实的技术基础。最后,随着软件开发需求的不断增加,传统开发
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- 线性代数导引:张量与张量空间
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
线性代数,张量,张量空间,深度学习,机器学习,人工智能1.背景介绍在现代人工智能领域,深度学习和机器学习算法的蓬勃发展,使得对数据的高效处理和表示能力提出了更高的要求。线性代数作为数学基础,为理解和构建这些算法提供了坚实的基础。而张量,作为一种高维数组的表示形式,成为了深度学习和机器学习的核心数据结构。本篇文章将从线性代数的角度出发,深入探讨张量与张量空间的概念,并阐述其在深度学习和机器学习中的重
- Java 基于 SpringBoot+Vue 的动漫平台(附源码,文档)
程序员徐师兄
javaspringbootvue.js动漫平台动漫网站
博主介绍:✌程序员徐师兄、8年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战*✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《500套》Java微信小程序项目实战《200套》Python项目实战《200套
- 每天五分钟深度学习框架pytorch:搭建谷歌的Inception网络模块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络人工智能机器学习Inception
本文重点前面我们学习了VGG,从现在开始我们将学习谷歌公司推出的GoogLeNet。当年ImageNet竞赛的第二名是VGG,而第一名就是GoogLeNet,它的模型设计拥有很多的技巧,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构GoogLeNet的网络结构如图所示就是GoogLeNet的网络结构,在这个网络结构中我们可以看到红色框起来的地方,他就是Inception块,
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- Pytorch实现mnist手写数字识别
Zn要学习
python
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**我的环境:语言环境:Python3.8编译器:JupyterLab深度学习环境:torch==1.12.1+cu113torchvision==0.13.1+cu113一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimporttorchimporttorch.nnasnnimpo
- 本地部署DeepSeek模型技术指南
Evaporator Core
apacheDoris人工智能deepseek
DeepSeek模型是一种先进的深度学习模型,广泛应用于自然语言处理、计算机视觉等领域。为了充分利用DeepSeek模型的强大功能,许多开发者和研究人员选择在本地环境中部署该模型。本文将详细介绍如何在本地环境中部署DeepSeek模型,包括环境准备、模型下载、配置、优化以及代码实现等内容。通过本文的指导,您将能够在本地成功部署并运行DeepSeek模型。1.环境准备在部署DeepSeek模型之前,
- DeepSeek R1蒸馏版模型部署的实战教程
herosunly
DeepSeek从入门到精通deepseek大模型人工智能实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不