from osgeo import gdal
import os
class GRID:
# 读图像文件
def read_img(self,filename):
dataset=gdal.Open(filename) # 打开文件
im_width = dataset.RasterXSize # 栅格矩阵的列数
im_height = dataset.RasterYSize # 栅格矩阵的行数
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
im_proj = dataset.GetProjection() # 地图投影信息
im_data = dataset.ReadAsArray(0,0,im_width,im_height) # 将数据写成数组,对应栅格矩阵
del dataset
return im_proj,im_geotrans,im_data
# 写文件,以写成tif为例
def write_img(self,filename,im_proj,im_geotrans,im_data):
# gdal数据类型包括
# gdal.GDT_Byte,
# gdal .GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,
# gdal.GDT_Float32, gdal.GDT_Float64
# 判断栅格数据的数据类型
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
# 判读数组维数
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1,im_data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff") # 数据类型必须有,因为要计算需要多大内存空间
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
dataset.SetProjection(im_proj) # 写入投影
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
else:
for i in range(im_bands):
dataset.GetRasterBand(i+1).WriteArray(im_data[i])
del dataset
if __name__ == "__main__":
os.chdir(r'D:\file') # 切换路径到待处理图像所在文件夹
run = GRID()
proj,geotrans,data = run.read_img('0101.tif') #读数据
run.write_img('0.tif',proj,geotrans,data) #写数据
数据格式不止 tif 的,我们也可以采用 ENVI 的,只需要将 GTiff 替换成 ENVI 即可。