GAN缺陷检测

 

 

本文使用织物图片和纹理表面图片来测试实验模型的性能。包括3种织物图片和1种纹理表面图片。织物的图像来自数据库[13],纹理表面图像来自DAGM 2007[12]的数据集。在本文中,我们比较了监督语义分割模型[4]和本文提出的缺陷检测模型

12. HCI: Weakly Supervised Learning for Industrial Optical Inspection. https://hci.iwr.uniheidelberg.de/node/3616. Accessed 13 Nov 2017

13. Ngan, H.Y.T., Pang, G.K.H., Yung, N.H.C.: Automated fabric defect detection—a review. Image Vis. Comput. 29(7), 442–458 (2011)
————————————————
版权声明:本文为CSDN博主「李是李雅普诺夫的李」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_41742361/article/details/108091996

 

https://blog.csdn.net/qq_41742361/article/details/108091996?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162392130516780262513685%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=162392130516780262513685&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_v2~rank_v29-6-108091996.first_rank_v2_pc_rank_v29&utm_term=A+Surface+Defect+Detection+Method+Based+on+Positive+Samples&spm=1018.2226.3001.4187

你可能感兴趣的:(笔记)