深度强化学习之gym扫地机器人环境的搭建(持续更新算法,附源码,python实现)

想要源码可以点赞关注收藏后评论区留下QQ邮箱

本次利用gym搭建一个扫地机器人环境,描述如下:

在一个5×5的扫地机器人环境中,有一个垃圾和一个充电桩,到达[5,4]即图标19处机器人捡到垃圾,并结束游戏。同时获得+3的奖赏。左下角[1,1]处有一个充电桩,机器人到达充电桩可以充电且不再行走,获得+1的奖赏。环境中间[3,3]处有一个障碍物,机器人无法通过。

扫地机器人具体流程如下

1:每局游戏开始 机器人初始位置位于左上角 即[1,5]处

2:游戏进行过程中 机器人将在地图上不断进行探索

3:机器人遇到障碍物时无法通过 保持原地不动 获得-10的奖赏

4:地图上有两个终止状态,一个为捡到垃圾,获得+5的奖赏,另一个为达到充电桩进行充电进行充电  获得+1奖赏

5:扫地机器人到达终止状态 即一个情节结束 机器人回到初始位置 

 代码运行效果如下

扫地机器人环境搭建

   部分代码如下

# 深度强化学习——原理、算法与PyTorch实战,代码名称:代02-搭建扫地机器人的Gym环境.py

import gym
from gym import spaces
from gym.utils import seeding
import sys
from time import sleep
import signal


class Grid(object):
    def __init__(
            self,
            x: int = None,  # 坐标x
            y: int = None,  # 坐标y
            grid_type: int = 0,  # 类别值(0:空;1:障碍或边界)
            enter_reward: float = 0.0):  # 进入该格子的即时奖励
        self.x = x
        self.y = y
        self.grid_type = grid_type
        self.enter_reward = enter_reward
        self.name = "X{0}-Y{1}".format(self.x, self.y)

    def __str__(self):
        return "Grid: {name:{3}, x:{0}, y:{1}, grid_type:{2}}".format(self.x, self.y, self.grid_type, self.name)


class GridMatrix(object):
    def __init__(
            self,
            n_width: int,  # 水平方向格子数
            n_height: int,  # 竖直方向格子数
            default_type: int = 0,  # 默认类型,0-空
            default_reward: float = 0.0,  # 默认即时奖励值
    ):
        self.n_height = n_height
        self.n_width = n_width
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = None  # list(Grid) 将二维的格子世界中的格子存储在一维的列表中
        self.len = n_width * n_height  # 格子数
        self.reset()

    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x, y, self.default_type, self.default_reward))

    def get_grid(self, x, y=None):
        """
        获取一个格子信息
        args: 坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return: grid object
        """
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert (0 <= xx < self.n_width and 0 <= yy < self.n_height)  # 任意坐标值应在合理区间
        index = yy * self.n_width + xx  # 二维坐标展开为一维线性坐标
        return self.grids[index]

    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.enter_reward = reward
        else:
            raise ("grid doesn't exist")

    def set_type(self, x, y, grid_type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.grid_type = grid_type
        else:
            raise ("grid doesn't exist")

    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.enter_reward

    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.grid_type


class GridWorldEnv(gym.Env):
    metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30}

    def __init__(
            self,
            n_width: int = 5,  # 格子世界宽度(以格子数计)
            n_height: int = 5,  # 高度
            u_size=40,  # 当前格子绘制尺寸
            default_reward: float = 0,
            default_type=0):
        self.n_width = n_width
        self.n_height = n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.u_size = u_size
        self.screen_width = u_size * n_width  # 场景宽度
        self.screen_height = u_size * n_height  # 场景长度

        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0  # for rendering
        self.action = None  # for rendering

        # 0,1,2,3 represent left, right, up, down
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)

        self.state = None  # 格子世界的当前状态
        self.ends = [(0, 0), (4, 3)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = [(0, 0, 1), (4, 3, 5), (2, 2, -10)]
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()

你可能感兴趣的:(深度强化学习,机器人,python,深度学习,pytorch,人工智能)