1.1股票数据预处理练习

第一阶段、一个简单策略入门量化投资

1.1股票数据预处理练习


无论我们要对股票市场进行何种探索,在开始前,研究如何获取数据,并进行对应的预处理都是必要的。

本节以美股为例,进行股票数据预处理的练习。正文如下:


利用Yahoo财经提供的接口,获取一家公司的股票是相当容易的。下面这段代码可以获取苹果公司16年至今的股数

据。


import pandas as pd
import pandas_datareader.data as web
import datetime

start = datetime.datetime(2010,1,1)
end = datetime.date.today()
apple = web.DataReader("AAPL", "yahoo", start, end)
print(apple.head())

得到的数据如下所示:


                 Open       High        Low      Close  Adj Close   Volume

Date

2015-12-31 107.010002 107.029999 104.820000 105.260002 101.703697 40912300

2016-01-04 102.610001 105.370003 102.000000 105.349998 101.790649 67649400

2016-01-05 105.750000 105.849998 102.410004 102.709999  99.239845 55791000

2016-01-06 100.559998 102.370003  99.870003 100.699997  97.297760 68457400

2016-01-07  98.680000 100.129997  96.430000  96.449997  93.191338 81094400



你也许已经发现,受网络的影响,上面这段代码不一定能够运行成功,可能出现连接远程服务器失败的情况,那么把获取到的数据存到本地,需要时再读取就是件很自然的工作了。下面这段代码,模拟了将苹果公司股票数据保存成.csv文件,并在需要时读取的过程。


##### save data
apple.to_csv(path_or_buf='data_AAPL.csv')

##### read the data from .csv when need
apple=pd.read_csv(filepath_or_buffer='data_AAPL.csv')
print(apple.head())

请仔细对比从.csv文件中重新读取的数据发生的变化


        Date      Open      High       Low     Close Adj Close    Volume

0 2009-12-31 30.447144 30.478571 30.080000 30.104286 27.083506  88102700

1 2010-01-04 30.490000 30.642857 30.340000 30.572857 27.505054 123432400

2 2010-01-05 30.657143 30.798571 30.464285 30.625713 27.552608 150476200

3 2010-01-06 30.625713 30.747143 30.107143 30.138571 27.114347 138040000

4 2010-01-07 30.250000 30.285715 29.864286 30.082857 27.064222 119282800


可以看到,重新读取的数据的索引列发生了变化,这并不希望被看到,因为使用时间作为数据的索引列将会使后续的数据处理更加方便,也更加合理。

因此,使用如下代码来修改从.csv中读取的数据,使其恢复最初的样子。


date_list = []
for i in range(len(apple)):
    date_str = apple['Date'][i]
    t = time.strptime(date_str, "%Y-%m-%d")
    temp_date = datetime.datetime(t[0], t[1], t[2])
    date_list.append(temp_date)
apple['DateTime'] = pd.Series(date_list,apple.index)
del apple['Date']
apple = apple.set_index('DateTime')


还有一点需要注意,从Yahoo获取的数据中,只有收盘价提供了调整后的收盘价。但使用调整后收盘价与收盘价的比例,可以很容易的将开盘价,最低价,最高价的调整后价格计算出来。于是实现如下函数:


def ohlc_adjust(dat):
    return pd.DataFrame({"Open": dat["Open"] * dat["Adj Close"] / dat["Close"],
                       "High": dat["High"] * dat["Adj Close"] / dat["Close"],
                       "Low": dat["Low"] * dat["Adj Close"] / dat["Close"],
                       "Close": dat["Adj Close"]})


最后,我们将上面的内容进行整合,使得程序能够批量的获取、保存、读取、修改不同公司的股票数据。这分别通过实现stockdata_preProcess.py中的三个函数实现(代码在文末)

downloadAndSaveData()

repairAndGetData()

ohlc_adjust()

此时,我们只需提供一个所关心公司的股票代码列表即可完成预处理工作,例如:

listed_company_list = ["AAPL", "MSFT", "GOOG", "FB", "TWTR", "NFLX", "AMZN", "SNY", "NTDOY", "IBM", "HPQ"]


调用函数downloadAndSaveData(listed_company_list,start,end),可以自动获取所提供列表中的公司,从startend时间段内的股票数据。由于网络可能出现问题,代码中还加入了失败重连的机制。测试效果如下,所需的数据已经都保存到相应的.csv文件中了:


1.1股票数据预处理练习_第1张图片


-----------------------------------------------------------------------------------------------------------------------------------------------------------

完整代码:


import pandas as pd
import pandas_datareader.data as web
import datetime
import time
import os



# download the stock data
# parameter explanation:
# start & end : the time interval of the data we want to get(from start to end)
#     e.g :  start = datetime.datetime(2010, 1, 1)
#        end = datetime.date.today()
# listed_company_list : the list of listed companies that we are concerned about
#     e.g : listed_company_list = ["AAPL", "MSFT", "GOOG", "FB", "TWTR", "NFLX", "AMZN", "YHOO", "SNY", "NTDOY", "IBM", "HPQ"]
def downloadAndSaveData(listed_company_list, start, end):
    downloadResult_list=[] # use downloadResult_list to denote whether the data has download successfully
    for index in range(len(listed_company_list)):
        downloadResult_list.append(False)

    # start downloading data...
    for index in range(len(listed_company_list)):
        companyStr = listed_company_list[index]
        filename = "data_" + companyStr + ".csv"
        if os.path.exists(filename): # if the file has existed, we don't need to download again
            print(companyStr+"'s data has already exists ^_^")
            downloadResult_list[index]=True
            continue
        tryNumbers = 0
        max_tryNumbers = 10
        while tryNumbers




你可能感兴趣的:(Python,量化投资探索,股票,预处理)